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Abstract  
 

In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of 
exponentiated log-logistic distribution based on a complete sample. The procedures are developed to 
perform full Bayesian analysis of the exponentiated log-logistic distribution using MCMC simulation 
method in OpenBUGS, established software. We have obtained the Bayes estimates of the parameters and 
their probability intervals are presented. We have also discussed the estimation of reliability function.   A 
real data set is considered for illustration under independent gamma priors. 

Keywords - Exponentiated log-logistic distribution, maximum likelihood estimation, bayesian 

estimation, markov chain Monte Carlo, Model validation, OpenBUGS. 

1.  Introduction 

The log-logistic distribution is very useful in survival analysis since it has a nonmonotonic hazard 
function, (Bennett, 1983) and (Tadikamalla and Johnson, 1982). The shape of this distribution is very 
similar to that of the log-normal, but has a more tractable form than that of the log-normal which makes it 
more convenient than the log-normal distribution when dealing with censored data. (Srivastava and 
Shukla, 2008) studied the log-logistic distribution as step-stress model. (Balakrishnan and Malik, 1987) 
gave the moments of order statistics from the truncated log-logistic distribution. This distribution has 
been also studied by (Howlader and Weiss, 1992). (Lawless, 2003), (Lee and Wang, 2003) and (Murthy 
et al., 2004) provide an excellent review for the log-logistic distribution.In recent years, new classes of 
models have been proposed based on modifications such as adding parameters to the existing models. 
Adding one or more parameters to a distribution makes it richer and more flexible for modeling data. 
There are different ways for adding parameter(s) to a distribution. (Marshall and Olkin, 1997) added one 
positive parameter to a given (general) survival function. As described by (Marshall and Olkin, 2007) and 
(Klugman et al., 2012), an exponentiated distribution can be easily constructed. It is based on the 

observation that by raising any baseline cumulative distribution function (cdf) ( )baselineF x  to an 

arbitrary power 0  , a new cdf  ( ) ( ) ; 0baselineF x F x
    (1.1) is obtained with the additional 

parameter  . Following this idea, several authors have considered extensions from usual survival 
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distributions. For instance, (Mudholkar and Srivastava, 1993) considered the exponentiated Weibull 
distribution as a generalization of the Weibull distribution. (Gupta and Kundu, 1999) introduced the 
exponentiated exponential distribution as a generalization of the usual exponential distribution and 
(Nadarajah and Kotz, 2006) proposed exponentiated type distributions extending the Frchet, gamma, 
Gumbel and Weibull distributions. (Rosaiah, et al. (2006, 2007)) studied the reliability test plan for 
exponentiated log-logistic distribution. (Santana et al., 2012) introduced the Kumaraswamy-log-logistic 
distribution, which includes exponentiated log-logistic distribution.   

The cdf of the log-logistic distribution is given by  

   
 

  0 0
1

L L
x /

F x ; , ; , , x
x /
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  


     (1.2) 

where 0   is the shape and  0   is the scale parameter.  

The cdf of the exponentiated log-logistic(ELL) distribution is defined by raising  LLF x  to the power of 

 ,  namely     LLF x F x


 . The distribution function of ELL distribution with three parameters is 

given by 
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 (1.3)  

where 0   and 0   are shape parameters and 0   is a scale parameter. For 1  , the model 

reduces to the log-logistic distribution. Since   is the scale parameter, we can assume 1   without any 

loss of generality. For 1  , we have two-parameter ELL distribution and we shall denote it as

( , )ELL   . 

The rest of the article is organized as follows. The model and its features are introduced in Section 2. In 
Section 3, we have discussed the Bayesian model formulation including the priors, posterior, Gibbs 
sampler and its implementation in OpenBUGS. The real data set and its exploratory data analysis, 
maximum likelihood estimation (MLE) and model validation are described in Section 4. The full 
Bayesian analysis under independent gamma of priors for the data set using Markov chain Monte Carlo 
(MCMC) simulation method in OpenBUGS, an established software, is presented in Section 5. The Bayes 
estimates of the parameters and their probability intervals based on posterior samples are presented. The 
posterior analysis is performed and we have also estimated the reliability function.  Conclusions are given 
in Section 6. 

2. The exponentiated log-logistic model  

The cumulative distribution function of exponentiated log-logistic (ELL) distribution with two parameters 
is given by 

       0 0
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F x ; , ; , , x
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 (2.1) 
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where 0   and 0   are the shape parameters. The corresponding probability density function is 

given by 

     1
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x
f x ; , ; , , x

x x


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    


  
  

. (2.2) 

The reliability/survival function is 

                   1 0 0
1

x
R x; , ; , , x
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The hazard rate function is 
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  (2.4) 

The quantile function is given by 

  11 1 0 1
//

px p ; p
     . (2.5) 

The random deviate can be generated from ( , )ELL    by  

       11 1 0 1
//x u ; u
                    (2.6) 

where u has the  0 1U , distribution.   

 

 

 

 

 

 

 

 

 

 

  
Figure 1    The probability density function (Left panel); The hazard function (Right panel) of 

( , )ELL    distribution for 1   and different values of  . 



Journal of Progressive science, vol.4, no.1, 2013 
 

 101 

The thr  moment  and mode are  given by  
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Some of the typical ( , )ELL    density functions for different values of   and for 1   are depicted in 

Figure 1 (left panel). It is evident from the Figure 1 that the density function of the ELL distribution can 

take different shapes. Figure 1(right panel) exhibits the different hazard rate functions of ( , )ELL    

distribution. 

3. Bayesian model formulation   

In this section, we provide the Bayes estimates of the shape parameters assuming independent gamma 

priors for both the parameters   and  . For the ( , )ELL   , the Bayesian model is constructed by 

specifying a prior distribution for   and  , and then multiplying with the likelihood function to obtain 

the posterior distribution function. Given a set of data 1 ( , , )nx x x  , the likelihood function is 
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. (3.1) 

Prior distributions 

Denote the prior distribution of   and   as ( , )p   . The joint posterior is 

 ( , | ) ( , | ) ( , )p x L x p       . (3.2) 

We assume the independent gamma priors for  ~ ,  G a b  and   ~ ,  G c d  as 

1( ) e ; 0 , ( , ) 0
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a bb
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 (3.3) 

and 

1( ) e ; 0 , ( , ) 0 .
( )

c
c dd

p c d
c

     


 (3.4) 

Posterior distribution 

Combining the likelihood function with the prior via Bayes' theorem yields the posterior up to 
proportionality as 

    1 1
1

a n c np , | x exp b d T            (3.5) 
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where   
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The posterior is obviously complicated and no close form inferences appear possible. We, therefore, 
propose to consider MCMC methods to simulate samples from the posterior so that sample-based 
inferences can be easily drawn.  The Gibbs sampler is as an important Markov Chain Monte Carlo 
technique, which provides a way for extracting samples from the posteriors.. This sampling scheme was 
first introduced by (Geman and Geman, 1984), but the applicability to statistical modelling for Bayesian 
computation was demonstrated by (Gelfand and Smith, 1990). It generates a sample from an arbitrarily 
complex multidimensional distribution by sampling from each of the univariate full conditional 
distributions in turn. That is, every time a variate value is generated from a full conditional, it is 
influenced by the most recent values of all other conditioning variables and, after each cycle of iteration, 
it is updated by sampling a new value from its full conditional. The entire generating scheme is repeated 
unless the generating chain achieves a systematic pattern of convergence. It can be shown that after a 
large number of iterations the generated variates can be regarded as the random samples from the 
corresponding posteriors. (Gelman et al., 2004), (Albert, 2009), (Hamada et al., 2008), (Ntzoufras, 2009) 
and (Hoff, 2009) provide the details of the procedure and the related convergence diagnostic issues. 

Therefore to obtain the full conditional distribution of   (or  ), we need only choose the terms in the 

posterior, which involve parameter   (or  ). The full posterior conditional distributions for   and  , 

are 

         1
1

a np | , x exp b T       (3.7) 

and 

   1
1

c np | , x exp d T      . (3.8) 

As the exponentiated log-logistic(ELL) distribution is not available in OpenBUGS., it requires 
incorporation of a module in ReliaBUGS, (Kumar et al., 2010) and (Lunn, 2010),  subsystem of 
OpenBUGS for ELL. 

A module dexpo.loglogistic_T(alpha, beta)  is written in Component Pascal for ELL,  the corresponding 
computer program can be obtained from authors, to perform full Bayesian analysis in OpenBUGS using 
the method described in (Thomas et al., 2006), (Thomas, 2010), (Kumar et al., 2010) and (Lunn et al., 
2013). It is important to note that this module can be used for any set of suitable priors of the model 
parameters. Almost all aspects of the model in Bayesian framework can be studied using the developed 
module dexpo.loglogistic_T (alpha, beta), (Kumar, 2010). 

Gibbs Sampler : Implementation 

1. Select an initial value  (0) (0) (0) ,    to start the chain. 

2. Suppose at the ith-step,   ,   takes the value  ( ) ( ) ( ) ,i i i    then from full 

conditionals, we generate 
( 1)i   from  ( )| ,ip x   and 
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( 1)i   from  ( 1)| ,ip x     .   

3.   This completes a transition from ( )i  to ( 1)i  . 

4.   Repeat Step 2, N times. 

MCMC output: Posterior sample  

Monitor the convergence using convergence diagnostics (trace and ergodic mean plots). Suppose that 
convergence have been reached after 'B' iterations (the burn-in period). Discard the observations   

 (1) (2) ( ), , , B    and retain the observations 

       1 1
1 1 1 2 1

B j L
;  B M L   N ;  j  ,  , , M ;  L            

 
  

which are viewed as being an independent sample from the stationary distribution of the Markov chain 
that is typically the posterior distribution, where ‘L’ is the lag (or thin interval). 

Consider  (1) ( ) ( ), , , ,j M     as the MCMC output (posterior sample) for the posterior analysis 

 ( ) ( ) ( ) , ; 1, 2 , ,j j j j M     . 

Thus MCMC output is referred as the sample after removing the initial iterations (produced during the 

burn-in period) and considering the appropriate lag. The Bayes estimates of   ,   , under squared 

error loss function, using the ergodic theorem are given by 

  ( )

1

1
ˆ

M
j

jM
 


   and      ( )

1

1ˆ
M

j

jM
 


  . (3.9) 

An important advantage of sample-based approaches includes the routine developments for any linear 
and/or non-linear functions of the original parameters. It is to be noted that once the samples from the 
posterior is obtained, samples from the posterior of any linear and/or non-linear functions can be easily 
created merely by substitution. Some of such functions where reliability practitioners are often interested 
include reliability, hazard rate, mean time to failure, percentiles, etc. 

4. Data, maximum likelihood estimation and model validation 

The following real data set is considered for illustration of the proposed methodology. The data given 
below represent active repair times (in hours) for 46 repair times of an airborne communication 
transceiver. (Chhikara and Folks, 1977) fitted a two-parameter inverse Gaussian distribution. The data are 
presented below: 

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5, 
1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 
22.0, 24.5 

4.1Exploratory data analysis (EDA) 
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EDA is an approach to statistical analysis, heavily graphical in nature that attempts to maximize insight 
into data, (Tukey, 1977). It allows data to speak for themselves, without making assumptions and 
conducting formal analyses.  The descriptive statistical methods quantitatively describe the main features 
of data.  

 

 

 

 

 

 

 

 

 

 

The main data features are (i) measures of central tendency(e.g. mean and median); (ii) measures of 
variability (e.g., standard deviation)  and  (iii) measures of relative standing (e.g., quantiles). The 
descriptive statistics for the above data set are presented in Table 1. We have plotted the boxplot in Figure 
2, which shows that data set contains three “outliers”.  The estimation of the parameter of the proposed 
model is obtained by the method of maximum likelihood (ML) estimation.  

4.2 Maximum likelihood estimation (MLE) and asymptotic confidence 
intervals 

In this section, we briefly discuss the maximum likelihood estimators (MLE’s) of the two-parameter ELL 
distribution and discuss their asymptotic properties to obtain approximate confidence intervals based on 
MLE’s. 

Let  1 nx x , . . . , x  be a random sample of size n from  ELL ,  , then the log-likelihood function 

( ,  )   can be written as;   

       
1 1 1

1 1
n n n

ii i
i i i

( , ) n l o g n l o g l o g x l o g x l o g x      
  

        
 .  (4.1) 

Therefore, to obtain the MLE’s of   and  , we can maximize (9) directly with respect to   and   or 

we can solve the following two non-linear equations using iterative method  e.g. Newton-Raphson 
method  

Table -1: Summary statistics 

Minimum  0.200 

First Quartile (Q1) 0.800 

Median  1.750 

Mean  3.607 

Third Quartile (Q3) 4.375 

Maximum  24.500 

Kurtosis 8.295 

Skewness 2.795 
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Let us denote the parameter vector by  ,    and the corresponding MLE of  as  ˆ ˆˆ,   then the 

asymptotic normality results in 

         1
2 0ˆ N , I   

   (4.2) 

where  I   is the Fisher’s information matrix given by 
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. (4.3) 

In practice, it is useless that the MLE has asymptotic variance    1
I  

because we do not know  .  

Hence, we approximate the asymptotic variance by “plugging in” the estimated value of the parameters.  

The common procedure is to use observed Fisher information matrix  ˆO   (as an estimate of the 

information matrix  I  ) given by 
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 (4.4) 

where H is the Hessian matrix,   ,    and  ˆ ˆˆ,   . The Newton-Raphson algorithm to maximize 

the likelihood produces the observed information matrix. Therefore, the variance-covariance matrix is 
given by 

       
   

1

ˆ

ˆˆ ˆvar cov , 
H

ˆ ˆˆcov , var
 

  


  





 
  
  
 

. (4.5) 

Hence, from the asymptotic normality of MLEs, approximate 100(1 )%  confidence intervals for   and 

 can be constructed as 

    /2ˆ ˆ( )z var     and /2
ˆ ˆ( )z var        (4.6) 

 where /2z  is the upper percentile of standard normal variate. 
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4.3 Computation of MLE 

We have started the iterative procedure by maximizing the log-likelihood function given in equation.(9) 

directly with an initial guess for 0.5   and 0.5  , far away from the solution. We have used optim( ) 

function in R, (R Development Core Team, 2013) and (Rizzo, 2008), with option Newton-Raphson 

method. The iterative process stopped only after 26 iterations. We obtain ˆ 1.838   and ˆ 1.3297   and 

the corresponding log-likelihood value is ˆˆ( , ) 100.474    .  We have plotted the contour plot of 

( , )   in Figure 3, the (+) indicates the MLE.  

The 95% confidence interval is computed using (4.5) and (4.6). The Table 2 shows the ML estimates, 
standard error (SE)  and  95 % Confidence Intervals for the parameters alpha and beta. 
The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are defined as 

    ˆAIC 2 ( ) 2 p      and        BIC 2 ˆ( ) p log n    

where ˆ ˆˆ( , )    is the ML estimate of ( , )    and p is the number of parameters estimated in 

the model. The smaller the value of AIC and BIC, the better the model. The values of the information 
measures are AIC= 204.9 and BIC = 208.6, respectively.    

 
Table 2     MLE, standard error and 95% confidence interval 

Parameter MLE Std. Error 95% Confidence Interval 

alpha 1.8381 0.27185 (1.3053, 2.3709) 

beta 1.3297 0.15382 (1.0282, 1.6312) 
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Figure 4   The empirical and fitted distribution function. 

 

 

 

 

 

 

4.4 Model validation 

To check the validity of the model, we compute the Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted 
distribution function when the parameters are 
obtained by method of maximum likelihood. 
The graphical methods Quantile-Quantile 
(QQ) and Probability–Probability (PP) plots 
are used for suitability of the model under 
consideration. 

The value of K-S test statistic is 0.0899 and 
the corresponding p-value is given by 
0.8514. The high p-value clearly indicates 
that ELL distribution can be used to analyze 
the given data set, and we have also plotted 
the empirical distribution function and the 
fitted distribution function in Figure 4. It is 
clear that the estimated ELL distribution 
provides reasonable fit to the given data, 
(Kumar and Ligges, 2011). 

 

 

 

 

 

 

 

  

Figure 5   Probability-Probability (PP) plot (left panel); Quantile-Quantile (QQ) plot (right panel) 
using MLEs as estimate 
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A further support for this finding can be obtained by inspecting the probability-probability (P–P) and 
quantile–quantile (Q–Q) plots. The P-P plot shows the empirical and theoretical distribution functions. 
The Q-Q plot shows the estimated versus the observed quantiles. As can be seen from the straight line 
pattern in Figure 5 the ELL fits the data well. 

5.    Bayesian analysis 

The developed module dexpo.loglogistic_T(alpha, beta) in OpenBUGS is implemented for the full 
Bayesian analysis of the exponentiated log-logistic distribution using MCMC method. The following 
script can be used to get samples from the posterior arising from the model. 

OpenBUGS script for the Bayesian analysis of ELL distribution 

model 

{for( i in 1 : N ) {x[i] ~ dexpo.loglogistic_T(alpha, beta)  # ELL distribution reliability[i] <- 
R(x[i], x[i])  # to estimate reliability f[i] <- density(x[i], x[i])  # to estimate density}  

# Prior distributions of the model parameters  

   alpha ~ dgamma(0.001, 0.001)                    

   beta ~ dgamma(0.001, 0.001) } 

Data  

list(N=46, x = c(0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 
1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 
7.5, 8.8, 9.0, 10.3, 22.0, 24.5)) 

Initial values  
list(alpha=0.5, beta=0.5)         # Chain 1 

list(alpha=3.0, beta=2.5)         # Chain 2 

We run the model to generate two Markov Chains at the length of 40,000 with different starting points of 
the parameters. The convergence is monitored using trace and ergodic mean plots, we find that the 
Markov Chain converge together after approximately 2000 observations. Therefore, burn-in of 5000 
samples is more than enough to erase the effect of starting point (initial values). Finally, samples of size 
7000 are formed from the posterior by picking up equally spaced every fifth outcome, i.e. thin=5, starting 
from 5001.This are done to minimize the auto correlation among the generated deviates. 
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Therefore, we have the posterior sample  ( ) ( )
1 1, ; 1, ,7000j j j     from chain 1 and 

 ( ) ( )
2 2, ; 1, ,7000j j j     from chain 2.  

The chain 1 is considered for convergence diagnostics plots. The visual summary is based on posterior 
sample obtained from chain 1 whereas the numerical summary is presented for both the chains. The 
convergence is monitored by history/ trace and ergodic means plots. The sequential plot of parameters is 
the plot that most often exhibits difficulties in the Markov chain. Figure 6 shows the sequential 
realizations of the parameters of the model. In this case Markov chain seems to be mixing well enough 
and is likely to be sampling from the stationary distribution. The plot looks like a horizontal band, with no 
long upward or downward trends, we have evidence that the chain has converged. 

 

  

 

 

 

 

 

The running mean (ergodic mean) plot is a time series(iteration number) plot of the running mean for 
each parameter in the chain. The running mean is computed as the mean of all sampled values up to 
and including that at a given iteration. The convergence pattern based on ergodic averages is shown in 
Figure 7 indicating the convergence of the chain. 

 

 

 

 

 

 

 

 

We may consider an independent sample from the target distribution i.e. posterior. Thus, we can obtain 
the posterior summary statistics. 

5.1 Posterior analysis 
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(a) Numerical Summary 

The numerical summary is presented for  ( ) ( )
1 1, ; 1, , 7000j j j     from chain 1 and 

 ( ) ( )
2 2, ; 1, , 7000j j j     from chain 2.  

We have considered various quantities of interest and their numerical values based on MCMC sample of 
posterior characteristics for ELL distribution.  The MCMC results of the posterior mean, mode, standard 
deviation(SD), five point summary statistics (minimum, first quartile, median, third quartile  and 
maximum),  2.5th percentile,  97.5th percentile, 95% symmetric and HPD credible intervals of the 

parameters   and   are displayed in Table 3.  In fact, we have summarized the uncertainty about the 

parameters. 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The posterior characteristics presented in Table 3 are very closed for chain 1 and chain 2. Therefore, one can use 
either of the chains for posterior analysis. The Highest probability density (HPD) intervals are computed the 
algorithm described by (Chen and Shao, 1999) under the assumption of unimodal marginal posterior distribution. 

(b) Visual summary: Histogram and Kernel density estimates  

 

Table 3. Numerical summaries based on MCMC sample of posterior  characteristics for ELL 
distribution under gamma priors 

Characteristics 
Chain 1 Chain 2 

alpha    beta  alpha   beta  

Mean 1.830 1.327 1.836 1.328 

Standard  Deviation(S.D.) 0.271 0.157 0.275 0.153 

Monte Carlo(MC) error 0.003 0.002 0.003 0.002 

Minimum 0.982 0.824 1.030 0.791 

First Quartile (Q1) 1.645 1.218 1.640 1.222 

Median 1.817 1.322 1.826 1.320 

Third Quartile (Q3) 2.001 1.430 2.012 1.427 

Maximum 3.179 2.062 2.904 2.200 

Mode 1.801 1.323 1.857 1.303 

2.5th Percentile(P2.5) 1.336 1.040 1.344 1.048 

97.5th Percentile(P97.5) 2.400 1.654 2.412 1.632 

95% Credible Interval (1.336, 2.400) (1.040, 1.654) (1.344, 2.412) (1.048, 1.642) 

95% HPD Credible Interval (1.318, 2.374) (1.018, 1.627) (1.329, 2.393) (1.046, 1.640) 
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Figure 11   Density estimates 

 

 

 

 

 

 

 

 

The Figure 8 and Figure 9 represent the histogram and marginal posterior density for   (left panel) and 

for   (right panel). We have also plotted the actual realizations of parameter values along x-axis, which 

is known as “rug” plot. Histograms can provide insights on skewness, behaviour in the tails, presence of 
multi-modal behaviour, and data outliers; histograms can be compared to the fundamental shapes 
associated with standard analytic distributions.  The kernel density estimates have been drawn using R 
software with the assumption of Gaussian kernel and properly chosen values of the bandwidths.  It can be 

seen that  and  both are slightly positive skewed. 

5.2 Comparison with MLE 

We have used graphical method for the comparison of Bayes estimates with ML estimates. In Figure 10, 

the density functions ˆˆ( )f x; ,   using MLEs and Bayesian estimates, computed via MCMC samples 

under gamma priors, are plotted. It is clear from the Figure 10 that the MLEs and the Bayes estimates 
with respect to the gamma priors are quite close and fit the data very well. 

 

 

 

 

 

 

 

 

 

  

Figure 10   The density functions using ML and  
Bayesian estimates 



Journal of Progressive science, vol.4, no.1, 2013 
 

 112 

 

A further support for this finding can be obtained by inspecting the Figure 11. In Figure 15 we have 

plotted th2.5 , 50 and 97.5th th quantiles of the estimated density based on MCMC sample 

 ( ) ( )
1 1, ; 1, ,7000j j j    . Here the density is computed at each data point for 7000 posterior samples. 

The density corresponding to MLE has been plotted using the “plug-in” estimates of the parameters. It 
shows that we have a fairly good model for the given data set. 

5.3 Estimation of reliability function 

In this section our main aim is to demonstrate the effectiveness of proposed methodology. For this we 
have estimated the reliability function using MCMC samples under gamma priors. Since we have an 
effective MCMC technique, we can estimate any function of the parameters. We have used the empirical  

 
reliability function to make the 
comparison more meaningful. The 
Figure 12, exhibits the estimated 
reliability function (dashed line: 

th2.5 and 97.5th  quantiles;  solid line: 

50th  quantile) using Bayes estimate 

based on MCMC output under 
independent gamma priors for both 
the parameters and the empirical 
reliability function (solid line). The 
Figure 12 shows that reliability 
estimate based on MCMC is very 
closed to the empirical reliability 
estimates.  
 

 
Figure 12   The empirical and estimated reliability function using 

MCMC 
 

Conclusion 
 

We have discussed the Markov chain Monte Carlo (MCMC) method to compute the Bayesian estimates 
the parameters and reliability functions of exponentiated log-logistic distribution based on a complete 
sample. We have obtained the probability intervals for parameters. The MCMC method provides an 
alternative method for parameter estimation of the exponentiated log-logistic distribution. It is more 
flexible when compared with the traditional methods such as MLE method. Moreover, ‘exact’ probability 
intervals are available rather than relying on estimates of the asymptotic variances. Indeed, the MCMC 
sample may be used to completely summarize posterior distribution about the parameters, through kernel 
estimation. This is also true for any function of the parameters such as reliability and hazard functions. 
We have applied the developed techniques on a real data set. The paper successfully describes the scope 
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of Markov chain Monte Carlo (MCMC) technique in the exponentiated log-logistic distribution. Thus, the 
tools developed can be applied for full Bayesian analysis of exponentiated log-logistic distribution. 
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