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Abstract  
(Yano and Sawaki,1972) introduced quasi conformal curvature tensor in a Riemannian manifold. 
Recently one of the author (Prasad,2002) investgated pseudo projective curvature tensore tensor in a 
Riemannian manifold. In this paper, we defined quasi conharmonic curvature tensor on a Riemannian 
manifold and obtained its several properties. Finally a particular case has been investigated. 

 
1. Introduction 

 

Let conformal curvature tensor C, projective curvature tensor P, concircular curvature tensor V, 
conhormonic curvature tensor H, be respectively given by (Mishra, 1984) 

          C(X,Y )Z = R(X,Y )Z - 
ଵ

୬ିଵ
[S(Y,Z)X – S(X,Z)Y + g(Y,Z)QX – 

                                g(X,Z)QY] + 
௥

(௡ିଵ)(௡ିଶ)
[g(Y,Z)X - g(X,Z)Y],                                            (1.1) 

where R is the curvature tensor, S is the Ricci tensor and r is the scalar curvature, provided 
                               ′C(X; Y;Z;W) = g(C(X; Y )Z;W), 
                              ′R(X; Y;Z;W) = g(R(X; Y )Z;W) 
and 
                           S(X,Y)=g(QX,Y). 

          P(X,Y )Z = R(X,Y )Z - 
ଵ

୬ିଵ
[S(Y,Z)X – S(X,Z)Y]                                                            (1.2) 

          V(X,Y )Z = R(X,Y )Z - 
୰

୬(୬ିଵ)
[g(Y,Z)X – g(X,Z)Y]                                                            (1.3) 

          H(X,Y )Z = R(X, Y )Z - 
ଵ

୬ିଶ
[S(Y,Z)X – S(X,Z)Y + g(Y,Z)QX – g(X,Z)QY].                             (1.4) 

These satisfy the symmetric and skew symmetric property as well as cyclic property possessed by the 
curvature tensor R(X,Y)Z. 
In 1970-72, (Mishra and Pokhariyal, 1970, 1971 and 1972) defined following curvature tensors on a 
Riemannian manifolds 

          Hଵ(X,Y )Z = R(X, Y )Z + 
ଵ

୬ିଵ
[S(Y,Z)X – S(X,Z)Y],                                                                    (1.5) 

          Hଶ(X,Y )Z = R(X, Y )Z + 
ଵ

୬ିଵ
[g(X,Z)QY – g(Y,Z)QX],                                                               (1.6) 
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          Hଷ(X,Y )Z = R(X, Y )Z + 
ଵ

୬ିଵ
[g(Y,Z)QX – g(X,Z)QY],                                                               (1.7) 

          Hସ(X,Y )Z = R(X, Y )Z + 
ଵ

୬ିଵ
[g(X,Z)QY- g(X,Y )QZ].                                               (1.8) 

Some properties of these curvature tensors have been studied by many authors such as (De and Ghosh, 
1994, 1995 & 1996), (De and Yieldiz,2010), (Pokhariyal,1982), (Prasad, 1997, 2002 & 2003), (Prakash, 
2010) and many others.  
(Yano and Sawaki, 1972) introduced quasi conformal curvature tensor in Remannian manifold as follows 

         C(X, Y)Z = aR(X, Y, Z) + b [S(Y, Z)X – S(X, Z)Y + g(Y, Z)QX 

                              – g(X, Z)QY] – 
୰

୬
 ቀ

ୟ

୬ିଵ
 + 2bቁ[g(Y,Z)X-g(X,Z)Y].                   (1.9) 

where a and b are constants such that a, b ≠ 0. 
Some properties of quasi conformal curvature tensor have been studied by (Amur and Maralabhavi, 
1977), (Chaki and Ghosh, 1997), (De and Shaikh, 1997), (De and Cihan, 2006), (De and Jun and Gazi, 
2008), (Kumar, Prasad and Verma, 2009), (Prakash and Singh, 2009) and other workers. Recently one of 
the author (Prasad, 2002) introduced pseudo projective curvature tensor in a Riemannian manifold (n>2) 
by 
 

         P෩(X, Y)Z = aR(X, Y)Z + b [S(Y, Z)X – S(X, Z)Y] –   
୰

୬
 ቀ

ୟ

୬ିଵ
 + bቁ[g(Y,Z)X-g(X,Z)Y],              (1.10) 

where a and b are constants such that a,b ≠ 0. 
In recent papers, (Bagewadi, Prakash and Venkatesha, 2007), (Bagewadi, Basavarajappa and Venkatesha, 
2008), (Narain, Prakash and Prasad, 2009), (Sreenivasa, Bagewadi and Venkatesha, 2009), (Jaisaval and 
Ojha, 2010), (Prakasha, Bagewadi and Prasad, 2010) explored various geometrical properties by using 
this curvature tensor (1.10) on LP-Sasakian manifold, K-contact and trans-sasakian manifold, (LCS)2n+1 
manifold, weakly symmetric manifold and contact metric manifold with  ξ ∈N(K). Further in 2007, 
(Prasad and Maurya, 2007) investigated another curvature tensor on a Riemannian manifold (n>2), 

         V෩(X, Y)Z = aR(X, Y)Z +    
୰

୬
 ቀ

ୟ

୬ିଵ
 + 2bቁ[g(Y,Z)X-g(X,Z)Y],                                                     (1.11) 

and named as quasi concircular curvature tensor. 
Narain et al., (2009) and Kumar et al., (2009) extended this notation to LP-Sasakian manifold and P-
Sasakian manifold. In continuation of above study, we define another new curvature tensor which we call 

it quasi-conharmonic curvature tensor H෩ (n>3) of the type (1,3) as follows 

      H෩(X, Y)Z = aR(X, Y)Z + b ൣS(Y, Z)X – S(X, Z)Y൧ + c[g(Y, Z)QX– g(X, Z)QY]  

  −
୰

୬
 ቀ

ଶୟ

୬ିଶ
 + b + cቁ[g(Y,Z)X-g(X,Z)Y].                                                                     (1.12) 

where a and b are constants such that a,b ,c ≠ 0. 

This paper deals with Riemannian manifold (Mn, g) (n> 2) for which H෩ is conservative (Hicks, 1969). A 
manifold (Mn, g) (n>3) shall be called quasi conharmonically at or quasi conharmonically conservative 

according as H෩ =0 or div H෩ =0. In this paper it is proved that quasi conharmonically manifold is of zero 
scalar curvature provided that a (3n-4)+2(n-1)(n-2)(b+c) ≠ 0. Further a necessary and sufficient condition 
for an (Mn, g) to be quasi conharmonically conservative is obtained.It can be easily verifed that 

                                   ′H෩(X,Y,Z,W) = -′H෩(Y,X,Z,W) 
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                                   ′H෩(X,Y,Z,W) = -′H෩(X,Y,W,Z) 

                                   ′H෩(X,Y,Z,W) = -′H෩(Z,W,X,Y) 
and 

                                 ′H෩(X,Y,Z,W) + ′H෩(Y,Z,X,W) +′H෩(Z, X,Y, W) = 0. 

If a=1 and b = c = - 
ଵ

௡ିଶ
,  then (1.12) takes the form 

      H෩(X, Y)Z = R(X, Y)Z −
ଵ

௡ିଶ
ൣS(Y, Z)X – S(X, Z)Y൧ + [g(Y, Z)QX– g(X, Z)QY] = H(X,Y )Z 

where H(X, Y ) Z is conharmonic curvature tensor. Thus the conharmonic curvature tensor is a particular 

case of the tensor H෩(X, Y)Z. For this reason H෩ is called the quasi conharmonic curvature tensor. 
 

2 Quasi conharmonically at manifold 
In this case assume that H෩(X, Y)Z =0. 
Then from (1.12), we get 
 

        aR(X, Y)Z + b ൣS(Y, Z)X – S(X, Z)Y൧ + c[g(Y, Z)QX– g(X, Z)QY]  

        − 
୰

୬
 ቀ

ଶୟ

୬ିଶ
 + b + cቁ[g(Y,Z)X-g(X,Z)Y] = 0.                                                                                   (2.1)  

From (2.1), we have   
 

         a ′R(X, Y, Z, W) + b ൣS(Y, Z)g(X, W)– S(X, Z)g(Y, W)൧ + c[g(Y, Z)S(X, W)– 

          g(X, Z)S(Y, W)] − 
୰

୬
 ቀ

ଶୟ

୬ିଶ
 + b + cቁ[g(Y,Z)g(X,W)-g(X,Z)g(Y,W)] = 0.                                    (2.2)  

Putting X = W = ei  in (2.2), {ei}is an orthonormal basis of the tangent space at a point of the manifold 
and taking summation over ei, 1≤ i ≤ n, we get  

           [a+(n-1)b - c]S(Y,Z) = 
௥

௡(௡ିଶ)
[{a + (n-2)b}(n-1) + c(2n-1)(n-2)]g(Y,Z), 

which gives on further contraction 
           [a + (3n -4) + 2(n - 1)(n - 2)(b + c)]r = 0                                                                                      (2.3) 
If [a+(3n-4)+2(n-1)(n-2)(b+c)]≠ 0, then from (2.3), we have r = 0.  
Hence we have the following theorem: 

Theorem 2.1 A quasi conharmonically flat manifold is of zero scalar curvature provided that a (3n-
4)+2(n-1)(n-2)(b+c) ≠ 0. 
 

3 Quasi Conharmonically conservative (Mn, g)(n >3) 
In this section we assumet tha 

                                       divH෩ =0.                                                                                                             (3.1) 
Now differentiating (1.12) covariantly, we get 
   

     (D୙H෩)(X, Y)Z = a(D୙R)(X, Y)Z + b ൣ(D୙S)(Y, Z)X – (D୙S)(X, Z)Y൧ + 

                                 c[g(Y, Z)(D୙Q)X– g(X, Z)(D୙Q)Y]  

-  
ୈ౑୰

୬
 ቀ

ଶୟ

୬ିଶ
 + b + cቁ[g(Y,Z)X-g(X,Z)Y],                                                        
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which gives on contraction 

     (divH෩)(X, Y)Z = a(divR)(X, Y)Z + b ൣ(Dଡ଼S)(Y, Z) – (Dଢ଼S)(X, Z)൧ + 

                                 c[g(Y, Z)dr(X)– g(X, Z)dr(Y)] - 

   
ଵ

୬
 ቀ

ଶୟ

୬ିଶ
 + b + cቁ[g(Y,Z)dr(X)-g(X,Z)dr(Y)].                                                      (3.2) 

From (Eisenhat,1926), we have 
           (div R)(X,Y )Z = (DXS)(Y,Z) - (DY S)(X,Z). 
Hence (3.2) gives 

          (divH෩)(X, Y)Z =(a + b)[(DXS)(Y-Z) - (DY S)(X;Z)] – 

          ቂ
ଶୟ ା (୬ ିଶ)ୠ ା (୬ ା ଵ)(୬ି ଶ)ୡ

௡(௡ିଵ)
ቃ[g(Y,Z)dr(X)-g(X,Z)dr(Y)].                                                           (3.3) 

Suppose the Ricci tensor S(X,Y) is of Codazzi type i.e. 
            (DXS)(Y,Z) = (DY S)(X,Z) 
Then from (3.3), we get  

           (divH෩)(X, Y)Z = ቂ
ଶୟ ା (୬ ିଶ)ୠ ା (୬ ା ଵ)(୬ିଶ)ୡ

௡(௡ିଵ)
ቃ[g(Y,Z)dr(X)-g(X,Z)dr(Y)].                               (3.4) 

Hence if (divH෩)=0 then from (3.4), we get 
            [2a + (n - 2)b + (n + 1)(n - 2)c][g(Y,Z)dr(X) - g(X,Z)dr(Y )] = 0; 
Since 2a+(n-2)b+(n+1)(n-2)c ≠0 and hence 
            g(Y,Z)dr(X) -g(X,Z)dr(Y ) = 0; 
which shows that r is constant. Again if r is constant then from (3.4), we get 

            (divH෩)(X, Y )Z = 0. 
Hence we can state the following theorem 

Theorem 3.1 If in a Riemannian manifold (Mn, g(n > 3)), the Ricci tensoris Codazzi type then the 
manifold quasi conharmonically conservative if and only if the scalar curvature is constant provided that 
2a+(n-2)b+(n+1)(n-2)c≠0. 
According to as assumption, we have a+b ≠0, then from (3.3) we have 
 

          
(ୢ୧୴ୌ෩)(ଡ଼,ଢ଼)୞

௔ା௕
=[(DXS)(Y-Z) - (DY S)(X;Z)] – 

          ቂ
ଶୟ ା (୬   ିଶ)ୠ ା (୬ ା ଵ)(୬  ି  ଶ)ୡ

௡(௡ିଵ)(௔ା௕)
ቃ[g(Y,Z)dr(X)-g(X,Z)dr(Y)].                                                           (3.5) 

Hence from (3.5), we can state theorem as follows 

Theorem 3.2 If in a Riemannian manifold (Mn, g(n > 3)), the quasi conharrmonic curvature tensor is 
such that a+b≠0, the manifold is quasi conharrmonically conservative if and only if 
 

      [(DXS)(Y-Z) - (DY S)(X;Z)] = –ቂ
ଶୟ ା (୬ ିଶ)ୠ ା (୬ ା ଵ)(୬ି ଶ)ୡ

௡(௡ିଵ)(௔ା௕)
ቃ[g(Y,Z)dr(X)-g(X,Z)dr(Y)].  

4 Particular case 
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If the manifold becomes an Eienstein manifold (1.12) takes the form   

    H෩(X, Y)Z = aR(X, Y)Z −
୰

୬
 ቀ

ଶୟ

୬ିଶ
+ 2b + 2cቁ[g(Y,Z)X-g(X,Z)Y]. (a new curvature tensor)               (4.1) 

If a=1, b= - 
ଵ

ଶ(௡ିଵ)
  and c= - 

ଵ

௡ିଶ
, then (4.1) takes the form 

H෩(X, Y)Z = R(X, Y)Z −
୰

୬(୬ିଵ)
 [g(Y,Z)X-g(X,Z)Y] = V (X, Y )Z                                                     (4.2) 

where V is the concircular curvature tensor. 

Thus we see that concircular curvature tensor V is a special case of the tensor H෩ (X,Y)Z, which seemes to 
be generalization of concircular curvature tensor. 
Hence we call it as generalized concircular curvature tensor. 
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