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Abstract 
The analytical solution (stream function) of the Darcy equation in specific orthogonal curvilinear 
coordinates, including parabolic coordinates, parabolic cylindrical coordinates, and bi-polar cylindrical 
coordinates, is the subject of the current research. Stream function solution of (𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0, are 
also obtained analytically in parabolic co-ordinates and parabolic cylindrical co-ordinates. The resulting 
analytical expressions of the stream function solution are a suitable combination of trigonometric, 
exponential, Modified Bessel, Parabolic Cylinder, Whittaker, and Laguerre functions. 

Key words- Porous media, Orthogonal curvilinear coordinates, Modified Bessel functions, 
Whittaker function, Laguerre function 
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 Nomenclature  

Symbols Description 
𝑝 Fluid pressure 
𝑘 Permeability 

𝜇 Dynamic viscosity 
𝜓 Stream function 
𝒒 Fluid velocity vector 
𝛻 Gradient operator 

𝛻ଶ Laplacian operator 
(ℎଵ, ℎଶ, ℎଷ) Scale factors 

(𝑒ଵ,
∧

𝑒ଶ,
∧

𝑒ଷ

∧
) Unit vectors 

(𝑥, 𝑦, 𝑧) Cartesian coordinates 
(𝑢, 𝑣, 𝜙) Parabolic coordinates 
(𝜃, 𝜙, 𝑧) Bi-polar cylindrical coordinates 
(𝜉, 𝜂, 𝑧) Parabolic cylindrical coordinates 

(𝑢ଵ, 𝑢ଶ, 𝑢ଷ) Orthogonal curvilinear coordinates 
𝐷ఔ(𝜉) Parabolic cylinder function 

𝑊௥,௦(𝜉) Whittaker function 
𝐿௡

ఈ (𝑥) Laguerre polynomial 
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𝐼ଵ(. ) Modified Bessel function of first order of first kind 
𝐾ଵ(. ) Modified Bessel function of first order of second kind 

𝑈(𝑎, 𝑏, 𝑥) Confluent hypergeometric function of first kind 

1. Introduction 

          Let 𝒒  be the average fluid velocity over volume element consisting of the fluid and porous 
material, named as seepage or filtration velocity, given in the book of Nield and Bejan (2006). 
Assuming that𝑝is fluid velocity,𝜇is dynamic coefficient of viscosity and 𝑘is permeability of porous 
medium. The seepage velocity of fluid flow through porous medium is proportional to the driving 
pressure gradient commonly known as Darcy law and the mathematical form of Darcy’s law is 
expressed by Darcy equation 

𝛻𝑝 = −
ఓ

௞
𝒒.           (1.1) 

           Joseph et al. (1982) proposed that the generalization of Darcy’s equation, whenever the inertial 
effects are included. Deo and Tiwari (2008) obtained the analytical solution of the partial differential 
equation 𝐸ଶ𝜓 = 0 in bispherical polar coordinates which is arising in the irrotational fluid flow. Khuri 
and Wazwaz (1996) studied the irrotational fluid motion partial differential equation 𝐸ଶ𝜓 = 0  is 
investigated in the toroidal coordinates. Dassios et al. (1994) investigated the Stokes equation in 
spheroidal coordinates by using the semi-separable nature of spheroidal coordinates. 

          Brinkman (1947) formulated the generalized version of Darcy equation, named as Brinkman 
equation which is the governing equation of fluid flow through porous medium. In the cylindrical polar 
coordinates, Deo and Maurya (2019) presented the stream function solution the Brinkman equation in 
the generalized form which is containing the hypergeometric, trigonometric, and modified Bessel 
functions. Expressions for velocity and acceleration in the parabolic cylindrical coordinates are reported 
earlier by Omonile et al.  (2015). Zaytoon et al. (2016) reported the solution of Weber’s differential 
equation for both initial value problems and boundary value problems. Stream function solution of the 
Brinkman equation and the Stokes equation in the parabolic cylindrical coordinates, obtained by 
Maurya and Deo (2020). Maurya et al. (2021) investigated the Stokes flow of micropolar fluid (i.e., 
non-Newtonian) through porous cylinder for two types of boundary value problems and presented a 
comparison for both BVPs graphically. Deo et al. (2021) reported the influence of external and uniform 
magnetic field on hydrodynamic permeability of biporous membrane relative to the flow of micropolar 
fluid using cell models. Deo and Maurya (2022) investigated the MHD impacts on micropolar–
Newtonian fluid flow through composite porous channel and reported the numerical value of flow rate, 
wall shear stresses and couple stresses at respective porous interfaces. Deo et al. (2020) reported the 
result about Stokesian flow of a non-Newtonian liquid in a cylindrical pipe enclosing a 
solid/impermeable core coated with porous layer in the presence of magnetic field. Maurya and Deo 
(2022) investigated the effectiveness of the magnetic field on Newtonian fluid sandwiched between two 
porous cylindrical pipes which are filled with micropolar liquids. 

2. Formulation of Problem 

Our goal is to solve the Darcy equation (1.1) using the general stream function in a specific orthogonal 
coordinate system. The estimated coordinates are: 

 Parabolic coordinates(𝑢, 𝑣, 𝜙) 
 Parabolic cylindrical coordinates(𝜃, 𝜙, 𝑧) 
 Bi-polar cylindrical coordinates(𝜉, 𝜂, 𝑧) 

3. Solution in Parabolic Coordinates(𝒖, 𝒗, 𝝓) 
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Transformation equations between 3-dimensional Cartesian coordinates(𝑥, 𝑦, 𝑧) and 3-dimensional 
Parabolic coordinates(𝑢, 𝑣, 𝜙) are: 

𝑥 = 𝑢𝑣 𝑐𝑜𝑠 𝜙 , 𝑦 = 𝑢𝑣 𝑠𝑖𝑛 𝜙 , 𝑧 =
ଵ

ଶ
(𝑣ଶ − 𝑢ଶ),               (3.1) 

where0 ≤ 𝑢 < ∞, 0 ≤ 𝑣 < ∞  and 0 ≤ 𝜙 ≤ 2𝜋. 

In the parabolic coordinates, scale factors are: 

ℎଵ = √𝑢ଶ + 𝑣ଶ, ℎଶ = √𝑢ଶ + 𝑣ଶ, ℎଷ = 𝑢𝑣.                (3.2) 

Defining a differential operator 𝐸ଶ in the orthogonal curvilinear coordinates (𝑢ଵ, 𝑢ଶ, 𝑢ଷ): 

 

𝐸ଶ =
ℎయ

ℎభℎమ
ቂ

డ

డ௨భ
ቀ

ℎమ

ℎయℎభ

డ

డ௨భ
ቁ +

డ

డ௨మ
ቀ

ℎభ

ℎమℎయ

డ

డ௨మ
ቁቃ.                                                                         (3.3)  

Fluid motion is only conceivable when the conservation of mass principle is true, or when the 
equation of continuity is satisfied. For incompressible fluid, 

          𝛻 ⋅ 𝒒 = 0.                    (3.4) 

In two-dimensional fluid motion, fluid velocity vector 𝒒 = (𝑞ଵ(𝑢, 𝑣), 𝑞ଶ(𝑢, 𝑣),0)  can be assumed. 
Introducing the scalar valued function 𝜓(𝑢, 𝑣) is such a way that equation of continuity is automatically 
satisfied. For this, we may choose 

𝑞ଵ = −
ଵ

௨௩ඥ௨మା௩మ
ቀ

డట

డ௩
ቁand  𝑞ଶ =

ଵ

௨௩ඥ௨మା௩మ
ቀ

డట

డ௨
ቁ.       (3.5) 

By the 2nd order vector identity of the form 

              𝛻 × (𝛻𝑝) = 0.           (3.6) 

Applying the curl operator on equation (1.1), we get 

𝛻 × 𝒒 = 𝟎, ⇒ 𝐸ଶ𝜓 = 0, 

where, differential operator 𝐸ଶis given by 

 𝐸ଶ =
௨௩

௨మା௩మ
ቂ

డ

డ௨
ቀ

ଵ

௨௩

డట

డ௨
ቁ +

డ

డ௩
ቀ

ଵ

௨௩

డట

డ௩
ቁቃ. 

Therefore, we have 

                  
డమట

డ௨మ +
డమట

డ௩మ −
ଵ

௨

డట

డ௨
−

ଵ

௩

డట

డ௩
= 0.           (3.7) 

4. Solution of Problem (3.7) 

In this section, we wish to obtain the solution of partial differential equation (3.7) with the help 
of method of separation. For this, we can define the stream function 𝜓 as follows:  

               𝜓(𝑢, 𝑣) = 𝑢𝑣𝜉(𝑢)𝜍(𝑣).        (4.1) 

Substituting the value of equation (4.1) in the equation (3.7), we get the following differential 
equations: 

                 𝑢ଶ𝜉ඁඁ(𝑢) + 𝑢𝜉ඁ(𝑢) − (1 + (𝑛𝑢)ଶ)𝜉(𝑢) = 0,       (4.2) 
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and     𝑣ଶ𝜍ඁඁ(𝑢) + 𝑣𝜍ඁ(𝑣) − (1 − (𝑛𝑣)ଶ)𝜍(𝑣) = 0.       (4.3) 

Equation (4.2) is a special type of modified Bessel differential equation whose two linearly independent 
solutions are 𝐼ଵ(𝑛𝑢) and 𝐾ଵ(𝑛𝑢). On the other hand, equation (4.3) is a Bessel differential equation 
whose two solutions (linearly independent) are 𝐽ଵ(𝑛𝑣) and 𝑌ଵ(𝑛𝑣). Hence, the analytical solution of the 
Darcy equation (1.1) will be 

            𝜓(𝑢, 𝑣) = ∑ [𝐴௡𝐼ଵ(𝑛𝑢) + 𝐵௡𝐾ଵ(𝑛𝑢)]∞
௡ୀ଴ ௒భ(௡௩)

௃భ(௡௩)
,       (4.4) 

where, An’s and Bn’s are arbitrary parameters. 

5. Solution of(𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0in Parabolic Coordinates 

The Laplacian operator𝛻ଶin parabolic coordinates (𝑢, 𝑣, 𝜙) is 

  𝛻ଶ =
ଵ

௨௩(௨మା௩మ)
ቂ

డ

డ௨
ቀ𝑢𝑣

డ

డ௨
ቁ +

డ

డ௩
ቀ𝑢𝑣

డ

డ௩
ቁ +

డ

డథ
ቀ

௨మା௩మ

௨௩

డ

డథ
ቁቃ.     (5.1) 

For axi-symmetric flow, 

𝜕𝒒

𝜕𝜙
= 0. 

Therefore, equation(𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0, will imply that 

డమట

డ௨మ +
ଵ

௨

డట

డ௨
+

డమట

డ௨మ +
ଵ

௩

డట

డ௩
− 𝛼ଶ(𝑢ଶ + 𝑣ଶ)𝜓 = 0.       (5.2) 

It is a partial differential equation of order 2 with variable coefficients. With the help of method of 
separation of variables 𝜓(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣), it can be reduced into two ordinary differential equations 
with variable coefficients of the form: 

             𝑢ଶ𝑈ඁඁ(𝑢) + 𝑢𝑈ඁ(𝑢) − 𝑢ଶ(𝛼ଶ𝑢ଶ + 𝑛ଶ)𝑈(𝑢) = 0       (5.3) 

and                    𝑣ଶ𝑉ඁඁ(𝑣) + 𝑣𝑉ඁ(𝑣) − 𝑣ଶ(𝛼ଶ𝑣ଶ − 𝑛ଶ)𝑉(𝑣) = 0.      (5.4) 

The equations (5.3) and (5.4) are special cases of Laguerre differential equation. Two linearly 
independent solutions of these equations are Laguerre polynomial 𝐿௡

ఈ (𝑥) and confluent hypergeometric 
function of first kind 𝑈(𝑎, 𝑏, 𝑥). Therefore, the general solution of differential equations (5.3) and (5.4) 
will be  

𝑈(𝑢) = ൥𝐶ଵ𝑈 ቀ
௡మ

ସ௟
+

ଵ

ଶ
, 1, 𝑙𝑢ଶቁ + 𝐶ଶ𝐿

ି൬
೙మ

ర೗
ା

భ

మ
൰

଴ (𝑙𝑢ଶ)൩ 𝑒𝑥𝑝 ቀ−
௟௨మ

ଶ
ቁ,     (5.5) 

𝑉(𝑣) = ൥𝐶ଷ𝑈 ቀ−
௡మ

ସ௟
+

ଵ

ଶ
, 1, 𝑙𝑣ଶቁ + 𝐶ସ𝐿

ି൬ି
೙మ

ర೗
ା

భ

మ
൰

଴ (𝑙𝑢ଶ)൩ 𝑒𝑥𝑝 ቀ−
௟௩మ

ଶ
ቁ,               (5.6) 

where 𝐶௜ , 𝑖 = 1,2,3,4are arbitrary parameters. 

Hence, stream function solution of(𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0 in parabolic coordinates (𝑢, 𝑣, 𝜙) will be 

𝜓(𝑢, 𝑣) = ∑ ቈ𝑃௡𝑈 ቀ
௡మ

ସ௟
+

ଵ

ଶ
, 1, 𝑙𝑢ଶቁ + 𝑄௡𝐿

ି൬
೙మ

ర೗
ା

భ

మ
൰

଴ (𝑙𝑢ଶ)቉௡   

                  𝑆௡𝑈 ቀ−
௡మ

ସ௟
+

ଵ

ଶ
, 1, 𝑙𝑢ଶቁ + 𝑆௡𝐿

ି൬
ష೙మ

ర೗
ା

భ

మ
൰

଴ (𝑙𝑢ଶ)] 𝑒𝑥𝑝 ቀ−
௟(௨మା௩మ)

ଶ
ቁ,          (5.7) 
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where𝑃௡, 𝑄௡, 𝑅௡ and 𝑆௡ are arbitrary parameters. 

6. Analytical Solution in Parabolic Cylindrical Coordinates (𝑢, 𝑣, 𝑧) 

The equations connecting the 3-dimensional Cartesian coordinates (𝑥, 𝑦, 𝑧) and parabolic cylindrical 
coordinates(𝑢, 𝑣, 𝑧) are given by 

𝑥 =  𝑐 (𝑢ଶ  − 𝑣ଶ), 𝑦 =  2𝑐𝑢𝑣, 𝑧 =  𝑧,           (6.1) 

where −∞ < 𝑢 < ∞, 0 ≤ 𝑣 < ∞, −∞ < 𝑧 < ∞ and 𝑐 > 0. 

In this case, scale factors are 

ℎଵ = 2𝑐ඥ𝑢ଶ + 𝑣ଶ, ℎଶ = 2𝑐ඥ𝑢ଶ + 𝑣ଶ, ℎଷ = 1. 

Assuming that fluid velocity vector is 𝒒 = (𝑞ଵ(𝑢, 𝑣), 𝑞ଶ(𝑢, 𝑣),0). Introducing the scalar valued function 
𝜓(𝑢, 𝑣) in such a way that equation of continuity is automatically satisfied. For this, we may choose 

               𝑞ଵ = −
ଵ

ଶ௖ඥ௨మା௩మ
ቀ

డట

డ௩
ቁand 𝑞ଶ =

ଵ

ଶ௖ඥ௨మା௩మ
ቀ

డట

డ௨
ቁ.       (6.2) 

Taking the curl on both sides on Darcy equation (1.1), then using 2nd order vector identity (3.6), we get 

                𝐸ଶ𝜓(𝑢, 𝑣) = 0,          (6.3) 

where, 𝐸ଶ =
௨௩

௨మା௩మ ቂ
డ

డ௨
ቀ

ଵ

௨௩

డట

డ௨
ቁ +

డ

డ௩
ቀ

ଵ

௨௩

డట

డ௩
ቁቃ. 

Therefore, on simplification, we will obtain that stream function is satisfying the two-dimensional 
Laplace equation in variables u and v of the form:  

డమట

డ௨మ +
డమట

డ௩మ = 0.           (6.4) 

7. Solution of Problem (6.4) 

To obtain the solution of partial differential equation (6.4) with the help of method of separation, we 
may assume 

𝜓(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣). (7.1) 

Substituting the value of ψ from the equation (7.1) in the Laplace equation (6.4), we will get 

1

𝑈

𝑑ଶ𝑈

𝑑𝑢ଶ
= −

1

𝑈

𝑑ଶ𝑉

𝑑𝑣ଶ
= −𝑛ଶ. (7.2) 

Therefore, we will get a pair of differential equations as follows: 

ௗమ௎

ௗ௨మ − 𝑛ଶ𝑈 = 0,          (7.3) 

and  
ௗమ௏

ௗ௨మ + 𝑛ଶ𝑉 = 0. (7.4) 

So, analytical solution of differential equations (7.3)-(7.4) are: 

𝑈(𝑢) = 𝐴ଵ 𝑐𝑜𝑠ℎ( 𝑛𝑢) + 𝐵ଵ 𝑠𝑖𝑛ℎ( 𝑛𝑢),        (7.5) 
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and    𝑉(𝑣) = 𝐴ଶ 𝑐𝑜𝑠( 𝑛𝑣) + 𝐵ଶ 𝑠𝑖𝑛( 𝑛𝑣).       (7.6) 

Therefore, general stream function solution of Darcy equation (1.1) can be expressed as: 

𝜓(𝑢, 𝑣) = ∑ [𝐴௡ 𝑐𝑜𝑠ℎ( 𝑛𝑢) + 𝐵௡ 𝑠𝑖𝑛ℎ( 𝑛𝑢)]௖௢௦(௡௩)
௦௜௡(௡௩)∞

௡ୀ଴ ,      (7.7) 

where, An’s and Bn’s are arbitrary parameters. 

8. Solution of(𝜵𝟐 − 𝜶𝟐)𝝍(𝒖, 𝒗) = 𝟎in Parabolic Cylindrical Coordinates 

The Laplacian operator (∇2) in parabolic cylindrical coordinates (u, v, z) is 

𝛻ଶ =
1

4𝑐ଶ(𝑢ଶ + 𝑣ଶ)
ቈ

𝜕ଶ

𝜕𝑢ଶ
+

𝜕ଶ

𝜕𝑣ଶ
+ 4𝑐ଶ(𝑢ଶ + 𝑣ଶ)

𝜕ଶ

𝜕𝑧ଶ
቉. 

Therefore, mathematical equation(𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0can be expressed as: 

డమట

డ௨మ +
డమట

డ௩మ − 𝛽ଶ(𝑢ଶ + 𝑣ଶ)𝜓 = 0,       (8.1) 

where 𝛽ଶ = 4𝑐ଶ𝛼ଶ. 

For analytical solution of the equation (8.1), we will apply the technique of separation of variable by 
choosing𝜓(𝑢, 𝑣) of the form: 

𝜓(𝑢, 𝑣) = 𝑈(𝑢)𝑉(𝑣).         (8.2) 

Substituting the value of𝜓(𝑢, 𝑣) from equation (8.2) in the differential equation (8.1), we will get a pair 
of differential equations 

ௗమ௎

ௗ௨మ − (𝛽ଶ𝑢ଶ + 𝑛)𝑈 = 0,         (8.3) 

and   
ௗమ௏

ௗ௩మ − (𝛽ଶ𝑣ଶ − 𝑛)𝑉 = 0.          (8.4) 

Above differential equations are particular cases of Weber differential equations, written from a 
classical book by Murphy (1969). In which, two linearly independent solutions of differential equation 

(8.3) are parabolic cylinder functions 𝐷ష೙షഁ

మഁ

(𝑢ඥ2𝛽) and 𝐷೙షഁ

మഁ

(𝑖𝑢ඥ2𝛽). To get real solutions, we shall 

transform the parabolic cylinder function 𝐷ఎ(𝜉)  in the Whittaker function 𝑊௥,௦(𝜉)  by using the 

following relation 

𝐷ఎ(𝜉) = 2
ആ

మ
ା

భ

ర𝜉ି
భ

మ𝑊ആ

మ
ା

భ

ర
,ି

భ

ర

ቀ
కమ

ଶ
ቁ.         (8.5) 

Hence, analytical solution of the equation(𝛻ଶ − 𝛼ଶ)𝜓(𝑢, 𝑣) = 0comes out as: 

          𝜓(𝑢, 𝑣) = ∑ ൬𝑃௡𝑢ି
భ

మ𝑊
ି

೙

రഁ
,ି

భ

ర

(𝑢ଶ𝛽) + 𝑄௡𝑢ି
భ

మ𝑊 ೙

రഁ
,ି

భ

ర

(−𝑢ଶ𝛽)൰∞
௡ୀ଴  

                            ൬𝑅௡𝑣ି
భ

మ𝑊 ೙

రഁ
,ି

భ

ర

(𝑣ଶ𝛽) + 𝑆௡𝑣ି
భ

మ𝑊
ି

೙

రഁ
,ି

భ

ర

(−𝑣ଶ𝛽)൰,     (8.6) 

where 𝑃௡, 𝑄௡, 𝑅௡ and 𝑆௡ are arbitrary parameters. 
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9. Analytical Solution in Bi-polar Cylindrical Coordinates (θ, ϕ, z) 

The bi-polar cylindrical coordinates (θ, ϕ, z) and 3-dimensional Cartesian coordinates (x, y, z) are given 
in the book of Happel and Brenner (1983). Connections transformed by following equations: 

                                        𝑥 =
௖ ௦௜௡௛ థ

௖௢௦௛ థି௖௢௦ ఏ
, 𝑦 =

௖ ௦௜௡ ఏ

௖௢௦௛ థି௖௢௦ ఏ
, 𝑧 = 𝑧,        (9.1) 

The scale factors in the bi-polar cylindrical coordinates h1, h2 and h3 are 

ℎଵ =
𝑐

𝑐𝑜𝑠ℎ 𝜙 − 𝑐𝑜𝑠 𝜃
, ℎଶ =

𝑐

𝑐𝑜𝑠ℎ 𝜙 − 𝑐𝑜𝑠 𝜃
, ℎଷ = 1. 

Assuming that velocity vector of Newtonian fluid is 𝒒 = (𝑞ଵ(𝜃, 𝜙), 𝑞ଶ(𝜃, 𝜙),0)Introducing the stream 
function 𝜓(𝜃, 𝜙) as:  

                                         𝑞ଵ = − ቀ
௖௢௦௛ థି௖௢௦

௖
ቁ

డట

డథ
𝑎𝑛𝑑𝑞ଶ = ቀ

௖௢௦௛ థି௖௢௦ ఏ

௖
ቁ

డట

డఏ
.                 (9.2) 

Applying the curl operator both sides on equation (1.1) and with the help of equation (3.6), we get     

        
డమట

డథమ +
డమట

డఏమ = 0.          (9.3) 

Therefore, stream function solution of the Darcy equation in the bi-polar cylindrical coordinates will be  

    𝜓(𝜃, 𝜙) = ∑ [𝐴௡ 𝑒𝑥𝑝( 𝑛𝜙) + 𝐵௡ 𝑒𝑥𝑝( 𝑛𝜙)]௖௢௦(௡ఏ)
௦௜௡(௡ఏ)∞

௡ୀ଴ ,      (9.4) 

where,𝐴௡’s and 𝐵௡’s are arbitrary parameters. 

Conclusion 
Analytical solutions to the Darcy equation’s stream function are found for some orthogonal 

curvilinear coordinate systems, including parabolic coordinates, parabolic cylindrical coordinates, and 
bi-polar cylindrical coordinates. The two-dimensional fluid flow passing through a porous media can be 
handled using such solutions. Stream function solution of the mathematical equation (𝛻ଶ −

𝛼ଶ)𝜓(𝑢, 𝑣) = 0,  are evaluated analytically in parabolic and parabolic cylindrical co-ordinates. 
Combinations of trigonometric, hyperbolic, exponential, Laguerre polynomial, parabolic cylinder, and 
Whittaker functions are employed in the analytical equations of the resultant stream function. 
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