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Abstract 

The object of the present paper is to study pseudo W଼ -flat generalized Sasakian-space-forms. We 
studied some properties of nearly ϕ −recurrent and extended nearly ϕ − W෩଼ −recurrent generalized 
Sasakian space forms. Also, we find some interesting results in nearly ϕ −Ricci recurrent and nearly 
ϕ − W෩଼ −Ricci recurrent generalized Sasakian-space-forms. 
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𝜙 − 𝑊෩଼ −Ricci recurrent.   

1. Introduction 

The curvature tensor of Riemannian in differential geometry plays an important role. As well as the 
sectional curvatures of a manifold determine the curvature tensor 𝑅  completely. A Riemannian 
manifold with constant sectional curvature 𝑐 is known as a real space form whose curvature tensor is 
given by  

𝑅(𝑋, 𝑌 )𝑍 =  𝑐[𝑔(𝑌, 𝑍)𝑋 −  𝑔(𝑋, 𝑍)𝑌],        

∀ 𝑋, 𝑌, 𝑍 ∈ TM. 

A Sasakian manifold with constant 𝜙 −sectional curvature becomes a Sasakain space form and it has a 
specific form of its curvature tensor. In order to, Alegre, Blair and Carriazo in 2004, introduced the 
notion of generalized Sasakian space form. 

An almost contact metric manifold 𝑀(𝜙, 𝜉, 𝜂, 𝑔) is known as a generalized Sasakain space form whose 
curvature tensor 𝑅 is given by 

𝑅(𝑋, 𝑌 )𝑍 = 𝑓ଵ𝑅ଵ + 𝑓ଶ𝑅ଶ + 𝑓ଷ𝑅ଷ,             

where 𝑓ଵ, 𝑓ଶ, 𝑓ଷ are differential functions on 𝑀 and  

𝑅ଵ(𝑋, 𝑌 )𝑍 = 𝑔(𝑌, 𝑍)𝑋 −  𝑔(𝑋, 𝑍)𝑌, 

𝑅ଶ(𝑋, 𝑌 )𝑍 = 𝑔(𝑋, 𝜙𝑍)𝜙𝑌 − 𝑔(𝑌, 𝜙𝑍)𝜙𝑋 + 2𝑔(𝑋, 𝜙𝑌)𝜙𝑍 , 

𝑅ଷ(𝑋, 𝑌 )𝑍 = 𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉, 

∀ 𝑋, 𝑌, 𝑍 ∈ TM. In 2004, the author gives several examples of generalized Sasakian space forms. If  

𝑓ଵ =
௖ାଷ

ସ
, 𝑓ଶ =

௖ିଵ

ସ
 and 𝑓ଷ =

௖ିଵ

ସ
, then a generalized Sasakian space form becomes Sasakian space 
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form.  The geometry of generalized Sasakian space form have been developed by several authors as 

Alegre and Carriazo (2008), Sular and Özgür (2011), Nagaraja, Somashekhara and Shashidhar (2012), 
Sarkar and Akbar (2014), Prakasha and Chavan (2015), Hui and Chakraborty (2016) and many others.  

Recurrence spaces have been of great importance and were studied by a large number of authors such 
as Ruse (1946), Walker (1950), Patterson (1952), Singh and Khan (1999), (2000) and Baishya and 
Chowdhury (2017) etc.  

Recently Prasad and Yadav (2021)   introduced a new type of non-flat   recurrent Riemannian manifold 
whose curvature tensor 𝑅 satisfies the condition: 

𝐷𝑅 = [𝐴 + 𝐵]𝑅 + 𝐵 ⊗ 𝐺,          (1.1) 

where  𝐷 denotes the operator of covariant differentiation with respect to metric tensor 𝑔 and two non-
zero 1-form defined as  

𝐴(𝑋) = 𝑔(𝑋, 𝜌ଵ)  and  𝐵(𝑋) = 𝑔(𝑋, 𝜌ଶ).      (1.2) 

The tensor 𝐺 is defined by  

𝐺(𝑋, 𝑌)𝑍 = 𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌,       (1.3) 

∀ 𝑋, 𝑌, 𝑍 ∈ TM. 

Such a manifold called as a nearly recurrent manifold and 1-form A and B shall be called its associated 
1-forms and n-dimensional recurrent manifold of this kind were denoted by them as (𝑁𝑅)௡.  

If in particular B = 0 in (1.4), then the space is reduced to a recurrent space according to Ruse (1946) 
and Walker (1950) which was denoted by 𝐾௡. Moreover, in particular, if A = B = 0 then (1.4) becomes 
𝐷𝑅 =  0. That is, a Riemannian manifold is symmetric according to Kobayashi and Nomizu (1963) and 
Desai and Amur (1975). The name nearly recurrent Riemannian manifold was chosen because if B = 0 
in (1.4) then the manifold reduces to a recurrent manifold which is very close to recurrent space. This 
justifies the name “Nearly recurrent Riemannian manifold” for the manifold defined by (1.4) and the 
use of the symbol (𝑁𝑅)௡ for it.  

Further, Prasad and Yadav (2021) introduced a new type of non-flat Ricci recurrent Riemannian 
manifold whose Ricci tensor 𝑆 satisfies the condition: 

(𝐷௑𝑆)(𝑌, 𝑍) = [𝐴(𝑋) + 𝐵(𝑋)]𝑆(𝑌, 𝑍) + 𝐵(𝑋)𝑔(𝑌, 𝑍),      (1.4) 

∀ 𝑋, 𝑌, 𝑍 ∈ TM where 𝐷, 𝐴 and 𝐵 defined as above. 

Such a manifold called as a nearly Ricci recurrent manifold and 1-forms 𝐴 and 𝐵 be its associated 1-
form. Nearly Ricci recurrent manifold of this kind were denoted by him as a 𝑁{𝑅(𝑅௡)}. The name 
nearly Ricci recurrent Riemannian manifold was chosen because if 𝐵 = 0 in (1.3) then the manifold 
reduces to a Ricci recurrent manifold which is very close to Ricci recurrent space. This justified the 
name “Nearly Ricci recurrent manifold” for the manifold defined by (1.3) and the use of the symbol 
𝑁{𝑅(𝑅௡)} for it.  

Let (𝑀௡ , 𝑔), 𝑛 >  3 be a connected Riemannian manifold of 𝐶ஶ and 𝐷 be its Riemannian connection. 

The pseudo 𝑊଼ curvature tensor 𝑊෩଼ Prasad Yadav and Pandey (2018) of (𝑀ଶ௡ାଵ , 𝑔)  are defined as  

𝑊෩଼(𝑋, 𝑌)𝑍 =  𝑎𝑅(𝑋, 𝑌 )𝑍 + 𝑏[𝑆(𝑋, 𝑌)𝑍 − 𝑆(𝑌, 𝑍)𝑋 ] −  

                                         
௥

ଶ௡ ା ଵ
   ቀ

௔

ଶ௡
 − 𝑏ቁ [𝑔(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 ],      (1.5) 

∀ 𝑋, 𝑌, 𝑍 ∈ TM where r is the scalar curvature tensor and if  =  1, 𝑏 =  
 ଵ

ଶ௡
 , then the pseudo 𝑊଼ 

curvature tensor 𝑊෩଼   reduces to 𝑊଼ curvature tensor Pokhariyal (1982). 
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In (1969), Tanno introduced the notion of 𝜙-recurrent Sasakian manifold and then Takahashi 
(1977) investigated the notion of a locally 𝜙 −symmetric Sasakian manifold and studied its various 
properties. This was further deduced by many authors such as Venkatesha, Sumangala and Bagewadi 
(2012), Kishor and Singh, Peghan and Tayeba (2013) and many others. Further in (2017), Prasad and 
Yadav studied the notion of semi-generalized 𝜙 − recurrent LP-Sasakain manifold. Recently Hui, 
Gowda and Chavan (2017) studied generalized 𝜙 −recurrent generalized Sasakian space forms. He 
proved a generalized  𝜙 −recurrent generalized Sasakian space form is generalized Ricci recurrent if 
and only if 𝑓ଵ − 𝑓ଷ is constant. Also, he proved some geometric properties of generalized Sasakian 
space form which are dependent on the nature of differentiable functions  𝑓ଵ, 𝑓ଶ and 𝑓ଷ. 

The motivation of the above ideas, the object of the present paper is the study of nearly 

𝜙 − recurrent, extended nearly 𝜙 − 𝑊෩଼ − recurrent, nearly 𝜙 − Ricci recurrent and nearly 𝜙 −

𝑊෩଼ −Ricci recurrent generalized Sasakian space form. The paper is organized after the introduction and 

preliminaries in section 3,  𝜉 − 𝑊෩଼ flat generalized Sasakian space form studied. Section 4 is devoted to 

the study of nearly 𝜙 −recurrent. In section 5, we show that an extended nearly  𝜙 − 𝑊෩଼ − recurrent 
generalized Sasakian space form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ)  is Einstein manifold, provided  𝑓ଵ − 𝑓ଷ ≠ 0.  We 
investigate in nearly 𝜙 − Ricci recurrent generalized Sasakain space-form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) , 1-forms  𝐴 

and  𝐵  are in opposite directions. Finally, in the last section, we show that nearly 𝜙 − 𝑊෩଼ −Ricci 
recurrent generalized Sasakian space form is an Einstein manifold, provided 𝑎 − 2𝑛𝑏 ≠ 0 and 𝑓ଵ −

 𝑓ଷ ≠ 0. 

2. Preliminaries 

A (2n+1) dimensional Riemannian manifold (𝑀ଶ௡ାଵ , 𝑔)  is said to be an almost contact metric 
manifold if it admits a tensor 𝜙 of type (1,1), 𝜉 is a vector fields of type (0,1) and 1-form 𝜂 is a tensor 
of the type (1,0) satisfying (Blair, 1976, 2000):  

           𝜙ଶ𝑋 = 𝑋 + 𝜂(𝑋)𝜉, 𝜂(𝜉) = −1, 𝜙𝜉 = 0,                                  (2.1) 

𝑔(𝑋, 𝜉) = 𝜂(𝑋), 𝜂(𝜙𝑋) = 0,              (2.2) 

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌),                 (2.3) 

𝑔(𝑋, 𝜙𝑌) = −𝑔(𝜙𝑋, 𝑌), 𝑔(𝜙𝑋, 𝑋) = 0,                   (2.4) 

for all 𝑋, 𝑌 ∈ 𝑇𝑀. 

Again for a (2n+1) dimensional generalized Sasakian space form, the following relation holds (Alegre, 
Blair and Carriazo, 2004): 

𝑅(𝑋, 𝑌 )𝑍 = 𝑓ଵ[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌] + 𝑓ଶ[𝑔(𝑋, 𝜙𝑍)𝜙𝑌 − 𝑔(𝑌, 𝜙𝑍)𝜙𝑋  

                     +2𝑔(𝑋, 𝜙𝑌)𝜙𝑍] + 𝑓ଷ[𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋 + 

                      𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉],                               (2.5) 

   𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌)],                     (2.6) 

               𝑆(𝑋, 𝑌) = (2𝑛𝑓ଵ + 3 𝑓ଶ − 𝑓ଷ)𝑔(𝑋, 𝑌) − [3𝑓ଶ + (2𝑛 − 1)𝑓ଷ]𝜂(𝑋)𝜂(𝑌),                (2.7) 

              𝑄𝑋 = (2𝑛𝑓ଵ + 3 𝑓ଶ − 𝑓ଷ)𝑋 − [3𝑓ଶ + (2𝑛 − 1)𝑓ଷ]𝜂(𝑋)𝜉,                 (2.8) 

              𝑆(𝜙𝑋, 𝜙𝑌) = 𝑆(𝑋, 𝑌) − 2𝑛(𝑓ଵ − 𝑓ଷ)𝜂(𝑋)𝜂(𝑌),                                (2.9) 

              𝑅(𝑋, 𝑌)𝜉 = (𝑓ଵ − 𝑓ଷ)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌],                                                                  (2.10) 

  𝑅(𝜉, 𝑋)𝑌 = (𝑓ଵ − 𝑓ଷ)[𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋],                (2.11) 

              𝑆(𝑋, 𝜉) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝜂(𝑋),                                                        (2.12) 

              𝑆(𝜉, 𝜉) = 2𝑛(𝑓ଵ − 𝑓ଷ),                                                                (2.13) 
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              𝑟 = 2𝑛[(2𝑛 + 1)𝑓ଵ + 3 𝑓ଶ − 2𝑓ଷ]                                          (2.14) 

and 

             𝐷௑𝜉 = −(𝑓ଵ − 𝑓ଷ)𝜙𝑋, (𝐷௑𝜂)(𝑌) = −(𝑓ଵ − 𝑓ଷ)𝑔(𝜙𝑋, 𝑌),                          (2.15) 

for all 𝑋, 𝑌 ∈ 𝑇𝑀. 

In view of (1.5), we have  

′𝑊෩଼(𝑋, 𝑌, 𝑍, 𝑈) = 𝑎 ′𝑅(𝑋, 𝑌, 𝑍, 𝑈) + 𝑏[𝑆(𝑋, 𝑌)𝑔(𝑍, 𝑈) − 𝑆(𝑌, 𝑍)𝑔(𝑋, 𝑈) ]  

                                      −
௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
− 𝑏ቁ [𝑔(𝑋, 𝑌)𝑔(𝑍, 𝑈) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑈) ],                 (2.16) 

∀ 𝑋, 𝑌, 𝑍 ∈ TM, where  

′𝑅(𝑋, 𝑌, 𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑈)  and  ′𝑊෩଼(𝑋, 𝑌, 𝑍, 𝑈) = 𝑔(𝑊෩଼(𝑋, 𝑌 )𝑍, 𝑈). 

Let 𝑋 = 𝑈 = 𝑒௜, 𝑖 = 1, 2, 3, … , 2𝑛 + 1, be an orthonormal basis of the tangent space at any point of the 
manifold. Then from (2.16), we have 

𝑊෩଼( 𝑌, 𝑍) = (𝑎 − 2𝑛𝑏) ቂ𝑆(𝑌, 𝑍) +
௥

ଶ௡ ା ଵ
𝑔(𝑌, 𝑍)ቃ,            (2.17) 

 where 

  𝑊෩଼( 𝑌, 𝑍) = ∑ ′𝑊෩଼(𝑒௜ , 𝑌, 𝑍, 𝑒௜)
ଶ௡ାଵ
௜  . 

In view of (2.17), we get  

𝑄ௐ෩ 𝑌 = (𝑎 − 2𝑛𝑏) ቂ𝑄𝑌 +
௥

ଶ௡ ା ଵ
𝑌ቃ,               (2.18) 

where  𝑄ௐ෩ 𝑌 and 𝑄 are called pseudo 𝑊଼ Ricci and Ricci operators respectively. 

3. 𝝃 − 𝑾෪𝟖 flat generalized Sasakian space form 

 A generalized Sasakian space form is   𝜉 − 𝑊෩଼ flat if  

𝑊෩଼(𝑋, 𝑌) 𝜉 = 0.           (3.1) 

Taking 𝜉 for 𝑍 in (1.5) and using (2.2), (2.10) and (2.12), we get  

𝑊෩଼(𝑋, 𝑌) 𝜉 =  𝑎(𝑓ଵ − 𝑓ଷ)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] + [𝑆(𝑋, 𝑌) 𝜉 − 2𝑛(𝑓ଵ − 𝑓ଷ)𝜂(𝑌)𝑋]  

                                     −
௥

ଶ௡ ା ଵ
   ቀ

௔

ଶ௡
 − 𝑏ቁ [𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋  ].      (3.2) 

From (3.1) and (3.2), we have  

𝑎(𝑓ଵ − 𝑓ଷ)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] + [𝑆(𝑋, 𝑌) 𝜉 − 2𝑛(𝑓ଵ − 𝑓ଷ)𝜂(𝑌)𝑋]  

            −
௥

ଶ௡ ା ଵ
   ቀ

௔

ଶ௡
 − 𝑏ቁ [𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋  ] = 0.          (3.3) 

Putting 𝜉 for 𝑌 in (3.3) and using (2.2) and (2.12), we get  

 𝑟 = −2𝑛(2𝑛 + 1)(𝑓ଵ − 𝑓ଷ), provided 𝑎 − 2𝑛𝑏 ≠ 0.      (3.4) 

Hence we have the following theorem: 

Theorem (3.1): A (2n+1) dimensional generalized Sasakain space-form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is 𝜉 − 𝑊෩଼ flat if 
the scalar curvature tensor 𝑟 = −2𝑛(2𝑛 + 1)(𝑓ଵ − 𝑓ଷ),  Provided 𝑎 − 2𝑛𝑏 ≠ 0. 

4. Nearly 𝝓 −recurrent generalized Sasakian space form 

Definition (4.1). A generalized Sasakian space form  𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is called nearly  𝜙 −Ricci recurrent 
generalized Sasakian space form if its Ricci tensor 𝑆 satisfies the condition: 

𝜙ଶ൫(𝐷௎𝑅)(𝑋, 𝑌)𝑍൯ = [𝐴(𝑈) + 𝐵(𝑈)]𝑅(𝑋, 𝑌)𝑍 + 𝐵(𝑈)𝐺(𝑋, 𝑌)𝑍.    (4.1) 

Using (2.1) in (4.1) we get 
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−(𝐷௎𝑅)(𝑋, 𝑌)𝑍 + 𝜂൫(𝐷௎𝑅)(𝑋, 𝑌)𝑍൯𝜉 = [𝐴(𝑈) + 𝐵(𝑈)]𝑅(𝑋, 𝑌)𝑍  

                                                                 +𝐵(𝑈)𝐺(𝑋, 𝑌)𝑍.     (4.2) 

Contracting (4.2) with respect to 𝑋, we get 

−(𝐷௎𝑆)(𝑌, 𝑍) + 𝜂൫(𝐷௎𝑅)(𝜉, 𝑌)𝑍൯ = [𝐴(𝑈) + 𝐵(𝑈)]𝑆(𝑌, 𝑍)  

                                                                 +2𝑛𝐵(𝑈)𝑔(𝑌, 𝑍).     (4.3) 

In view of (2.11), we get 

(𝐷௎𝑅)(𝜉, 𝑌)𝑍 = 𝑈(𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌] −  

     (𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑍)𝜙𝑈 − 𝑔(𝜙𝑈, 𝑍)𝑌 − 𝑅(𝜙𝑈, 𝑌)𝑍],     

which gives 

𝜂൫(𝐷௎𝑅)(𝜉, 𝑌)𝑍൯ = 𝑈(𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)] +  

          (𝑓ଵ − 𝑓ଷ)[𝑔(𝜙𝑈, 𝑍)𝜂(𝑌) + 𝜂(𝑅(𝜙𝑈, 𝑌)𝑍)].     (4.4) 

Using (2.6) in (4.4), we have 

𝜂൫(𝐷௎𝑅)(𝜉, 𝑌)𝑍൯ = 𝑈(𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)].       (4.5) 

Using (4.5) in (4.3), we obtain 

(𝐷௎𝑆)(𝑌, 𝑍) = −[𝐴(𝑈) + 𝐵(𝑈)]𝑆(𝑌, 𝑍) + [𝑈(𝑓ଵ − 𝑓ଷ) − 2𝑛𝐵(𝑈)]𝑔(𝑌, 𝑍)  

                         −𝑈(𝑓ଵ − 𝑓ଷ)𝜂(𝑌)𝜂(𝑍).        (4.6) 

which can be written as  

𝐷𝑆 = −[𝐴 + 𝐵]⨂𝑆 + 𝐶⨂𝑔 + 𝐷⨂𝜂⨂𝜂,                (4.7) 

where  𝐶 = 𝑈(𝑓ଵ − 𝑓ଷ) − 2𝑛𝐵(𝑈) and 𝐷(𝑈) = −𝑈(𝑓ଵ − 𝑓ଷ) 𝜂(𝑌)𝜂(𝑍). 

Hence, we have the following theorem: 

Theorem (4.1): A nearly 𝜙 −recurrent generalized Sasakian space form is nearly Ricci recurrent if 
and only if 𝑓ଵ − 𝑓ଷ is constant. 

If 𝑓ଵ − 𝑓ଷ = 1 then the generalized Sasakian space form reduces to Sasakian space form.  Hence due to 
Alegre, Blair and Carriazo (2004) and Theorem (4.1) can be restated as follows: 

Corollary (4.1): A nearly 𝜙 −recurrent generalized Sasakian space form is nearly Ricci recurrent. 

Putting 𝑍 = 𝜉 in (4.7) and using (2.1), (2.2) and (2.12), we get  

(𝐷௎𝑆)(𝑌, 𝜉 ) = −2𝑛(𝑓ଵ − 𝑓ଷ)[𝐴(𝑈) + 𝐵(𝑈)]𝜂(𝑌) + 2𝑛𝐵(𝑈)𝜂(𝑌).    (4.8) 

We have 

(𝐷௎𝑆)(𝑌, 𝜉 ) = 𝑈𝑆(𝑌, 𝜉 ) − 𝑆(𝐷௎𝑌, 𝜉 ) − 𝑆(𝑌, 𝐷௎𝜉 ).       (4.9) 

Using (2.12) and (2.15), we get 

(𝐷௎𝑆)(𝑌, 𝜉 ) = 2𝑛𝑈(𝑓ଵ − 𝑓ଷ)𝜂(𝑌) + (𝑓ଵ − 𝑓ଷ)[𝑆(𝑌, 𝜙𝑈) −  

  2𝑛𝑈(𝑓ଵ − 𝑓ଷ)𝑔(𝑌, 𝜙𝑈 ).        (4.10) 

From (4.8) and (4.10), we get 

2𝑛𝑈(𝑓ଵ − 𝑓ଷ)𝜂(𝑌) + (𝑓ଵ − 𝑓ଷ)[𝑆(𝑌, 𝜙𝑈) − 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝑌, 𝜙𝑈 )  

= −2𝑛(𝑓ଵ − 𝑓ଷ)[𝐴(𝑈) + 𝐵(𝑈)]𝜂(𝑌) + 2𝑛𝐵(𝑈)𝜂(𝑌).      (4.11) 

𝑌 is replaced by 𝜙𝑌  in (4.11) and using (2.10), we get 

𝑆(𝜙𝑌, 𝜙𝑈) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝜙𝑌, 𝜙𝑈 ), provided  𝑓ଵ − 𝑓ଷ ≠ 0.    (4.12) 

From (2.3), (2.9) and (4.12), we get 

𝑆(𝑌, 𝑈) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝑌, 𝑈 ). 
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Hence, we have the following theorem: 

Theorem (4.3): A nearly 𝜙 -recurrent generalized Sasakian space form is an Einstein manifold 
provided  𝑓ଵ − 𝑓ଷ ≠ 0. 

Now, putting 𝜉 for 𝑍 in (4.2), we get 

−(𝐷௎𝑅)(𝑋, 𝑌)𝜉 + 𝜂൫(𝐷௎𝑅)(𝑋, 𝑌)𝜉൯𝜉 = [𝐴(𝑈) + 𝐵(𝑈)]𝑅(𝑋, 𝑌)𝜉  

                                                                 +𝐵(𝑈)𝐺(𝑋, 𝑌)𝜉.     (4.13) 

  We have  

(𝐷௎𝑅)(𝑋, 𝑌)𝜉 = 𝐷௎𝑅(𝑋, 𝑌)𝜉 − 𝑅(𝐷௎𝑋, 𝑌)𝜉 − 𝑅(𝑋, 𝐷௎ 𝑌)𝜉 − 𝑅(𝑋, 𝑌)𝐷௎𝜉. (4.14)  

From (2.10), (2.15) and (4.14), we have 

(𝐷௎𝑅)(𝑋, 𝑌)𝜉 = 𝑈(𝑓ଵ − 𝑓ଷ)[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌] − (𝑓ଵ − 𝑓ଷ)ଶ.  

                           [𝑔(𝑋, 𝜙𝑈)𝑌 − 𝑔(𝑌, 𝜙𝑈)𝑋] + (𝑓ଵ − 𝑓ଷ)𝑅(𝑋, 𝑌)𝜙𝑈,   (4.15)  

which gives  

𝜂൫(𝐷௎𝑅)(𝑋, 𝑌)𝜉൯ = (𝑓ଵ − 𝑓ଷ)ଶ[𝑔(𝑋, 𝜙𝑈)𝜂(𝑌) − 𝑔(𝑌, 𝜙𝑈)𝜂(𝑋)]  

         +(𝑓ଵ − 𝑓ଷ)𝜂(𝑅(𝑋, 𝑌)𝜙𝑈).      (4.16) 

Using (2.6) in (4.16), we get 

𝜂൫(𝐷௎𝑅)(𝑋, 𝑌)𝜉൯ = 0.         (4.17) 

With the help of (4.15) and (4.17), the equation (4.13) reduces to 

 (𝑓ଵ − 𝑓ଷ)𝑅(𝑋, 𝑌)𝜙𝑈 = (𝑓ଵ − 𝑓ଷ)ଶ[𝑔(𝑌, 𝜙𝑈)𝑋 − 𝑔(𝑋, 𝜙𝑈)𝑌] +  

                                       [(𝑓ଵ − 𝑓ଷ){𝐴(𝑈) + 𝐵(𝑈)} + 𝐵(𝑈) + 𝑈(𝑓ଵ − 𝑓ଷ)]. 

   [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌].       (4.18)  

If 𝑋, 𝑌 and 𝑈 are orthogonal to 𝜉 then (4.18) becomes 

 𝑅(𝑋, 𝑌)𝜙𝑈 = (𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝜙𝑈)𝑋 − 𝑔(𝑋, 𝜙𝑈)𝑌], provided  𝑓ଵ − 𝑓ଷ ≠ 0.                       (4.19) 

𝑁𝑜𝑤 𝑈 is replaced by 𝜙𝑈  in (4.19) and using (2.1), we get 

𝑅(𝑋, 𝑌)𝑈 = (𝑓ଵ − 𝑓ଷ)[𝑔(𝑌, 𝑈)𝑋 − 𝑔(𝑋, 𝑈)𝑌], 

∀ 𝑋, 𝑌, 𝑈 ∈ TM. 

Hence, we have the following theorem: 

Theorem (4.4): A locally nearly 𝜙-recurrent generalized Sasakian space form is a constant curvature 
provided  𝑓ଵ − 𝑓ଷ ≠ 0. 

5. Extended nearly  𝝓 − 𝑾෪𝟖 −recurrent generalized Sasakian space form 

Definition (5.1). A generalized Sasakian space form  𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is called extended nearly  𝜙 −

𝑊෩଼ −  recurrent generalized Sasakian space form if pseudo 𝑊଼ −  curvature tensor 𝑊෩଼  satisfies the 
condition: 

𝜙ଶ ቀ൫𝐷௎𝑊෩଼ ൯(𝑋, 𝑌)𝑍ቁ = [𝐴(𝑈) + 𝐵(𝑈)]𝜙ଶ൫𝑊෩଼(𝑋, 𝑌)𝑍൯ +  

      𝐵(𝑈)𝜙ଶ(𝐺(𝑋, 𝑌)𝑍),             (5.1) 

∀ 𝑋, 𝑌, 𝑈 ∈ TM. 

Using (2.1) in (5.1) we get 

−൫𝐷௎𝑊෩଼ ൯(𝑋, 𝑌)𝑍 + 𝜂 ቀ൫𝐷௎𝑊෩଼ ൯(𝑋, 𝑌)𝑍ቁ 𝜉 = −[𝐴(𝑈) + 𝐵(𝑈)]𝑊෩଼(𝑋, 𝑌)𝑍  
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 + [𝐴(𝑈) + 𝐵(𝑈)]𝜂൫𝑊෩଼(𝑋, 𝑌)𝑍൯𝜉 + 𝐵(𝑈)[−𝐺(𝑋, 𝑌)𝑍 + 𝜂(𝐺(𝑋, 𝑌)𝑍)𝜉].         (5.2) 

In view of (1.5) and (5.2), we get 

− ቂ𝑎(𝐷௎𝑅 )(𝑋, 𝑌 )𝑍 + {(𝐷௎𝑆)(𝑋, 𝑌)𝑍 − (𝐷௎𝑆)(𝑌, 𝑍)𝑋} −
௎௥

ଶ௡ ା ଵ
.  

ቀ
𝑎

2𝑛
 – 𝑏ቁ {𝑔(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 }ቃ + [𝑎𝜂((𝐷௎𝑅 )(𝑋, 𝑌 )𝑍) + 𝑏{(𝐷௎𝑆)(𝑋, 𝑌)𝜂(𝑍) 

 −(𝐷௎𝑆)(𝑌, 𝑍)𝜂(𝑋)} −
௎௥

ଶ௡ ା ଵ
 ቀ

௔

ଶ௡
 − 𝑏ቁ {𝑔(𝑋, 𝑌)𝜂(𝑍) − 𝑔(𝑌, 𝑍)𝜂(𝑋) }]𝜉= 

−[𝐴(𝑈) + 𝐵(𝑈)] ቂ𝑎𝑅(𝑋, 𝑌 )𝑍 + 𝑏{𝑆(𝑋, 𝑌)𝑍 − 𝑆(𝑌, 𝑍)𝑋} −
௥

ଶ௡ ା ଵ
.  

ቀ
௔

ଶ௡
 – 𝑏ቁ {𝑔(𝑋, 𝑌)𝑍 − 𝑔(𝑌, 𝑍)𝑋 }ቃ + [𝐴(𝑈) + 𝐵(𝑈)][𝑎𝜂(𝑅(𝑋, 𝑌 )𝑍) +  

𝑏{𝑆(𝑋, 𝑌)𝜂(𝑍) − 𝑆(𝑌, 𝑍)𝜂(𝑋)} −
௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
 − 𝑏ቁ {𝑔(𝑋, 𝑌)𝜂(𝑍) −  

𝑔(𝑌, 𝑍)𝜂(𝑋) }]𝜉 + 𝐵(𝑈)[−𝐺(𝑋, 𝑌)𝑍 + 𝜂(𝐺(𝑋, 𝑌)𝑍)𝜉].           (5.3) 

Contracting (5.3) with respect to 𝑋, we get 

 −(𝑎 − 2𝑛𝑏) ቂ(𝐷௎𝑆)(𝑌, 𝑍) −
௎௥

ଶ௡ ା ଵ
𝑔(𝑌, 𝑍)ቃ + [𝑎𝜂((𝐷௎𝑅 )(𝜉, 𝑌 )𝑍) + 

𝑏{(𝐷௎𝑆)(𝜉, 𝑌)𝜂(𝑍) − (𝐷௎𝑆)(𝑌, 𝑍)} −
௎௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
 − 𝑏ቁ {𝜂(𝑌)𝜂(𝑍) − 𝑔(𝑌, 𝑍)]  

= −(𝑎 − 2𝑛𝑏)[𝐴(𝑈) + 𝐵(𝑈)] ቂ𝑆(𝑌, 𝑍) −
௥

ଶ௡ ା ଵ
𝑔(𝑌, 𝑍)ቃ + [𝐴(𝑈) + 𝐵(𝑈)].  

[𝑎𝜂(𝑅(𝜉, 𝑌 )𝑍) + 𝑏{𝑆(𝜉, 𝑌)𝜂(𝑍) − 𝑆(𝑌, 𝑍)} −
௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
 − 𝑏ቁ {𝜂(𝑌)𝜂(𝑍) −  

𝑔(𝑌, 𝑍)}] + 𝐵(𝑈)[𝜂(𝑌)𝜂(𝑍) − (2𝑛 − 1)𝑔(𝑌, 𝑍)].            (5.4) 

Using (2.11), (2.12), (4.6) and (4.10) in (5.4), we get 

−(𝑎 − 2𝑛𝑏) ቂ(𝐷௎𝑆)(𝑌, 𝑍) −
௎௥

ଶ௡ ା ଵ
𝑔(𝑌, 𝑍)ቃ + [𝑎. 𝑈(𝑓ଵ − 𝑓ଷ){𝑔(𝑌, 𝑍)  

−𝜂(𝑌)𝜂(𝑍)}] + 𝑏[2𝑛𝑈(𝑓ଵ − 𝑓ଷ)𝜂(𝑌)𝜂(𝑍) − 2𝑛(𝑓ଵ − 𝑓ଷ)ଶ𝑔(𝜙𝑈, 𝑌)𝜂(𝑍)   

+2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝜙𝑈, 𝑌)𝜂(𝑍) − (𝐷௎𝑆)(𝑌, 𝑍)] −
௎௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
 − 𝑏ቁ {𝜂(𝑌)𝜂(𝑍)  

−𝑔(𝑌, 𝑍)] = −(𝑎 − 2𝑛𝑏)[𝐴(𝑈) + 𝐵(𝑈)] ቂ𝑆(𝑌, 𝑍) −
௥

ଶ௡ ା ଵ
𝑔(𝑌, 𝑍)ቃ +   

[𝐴(𝑈) + 𝐵(𝑈)][𝑎. (𝑓ଵ − 𝑓ଷ){𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍)} +   

𝑏{2𝑛(𝑓ଵ − 𝑓ଷ)𝜂(𝑌)𝜂(𝑍) − 𝑆(𝑌, 𝑍)} −
௥

ଶ௡ ା ଵ
ቀ

௔

ଶ௡
 − 𝑏ቁ {𝜂(𝑌)𝜂(𝑍) −   

𝑔(𝑌, 𝑍)}] + 𝐵(𝑈)[𝜂(𝑌)𝜂(𝑍) − (2𝑛 − 1)𝑔(𝑌, 𝑍)].             (5.5) 

Putting 𝜉 for 𝑍 in (5.5), we have 

−(𝑎 − 2𝑛𝑏)[2𝑛𝑈(𝑓ଵ − 𝑓ଷ)𝜂(𝑌) − 2𝑛(𝑓ଵ − 𝑓ଷ)ଶ𝑔(𝜙𝑈, 𝑌)   

+2𝑛(𝑓ଵ − 𝑓ଷ)𝑆(𝜙𝑈, 𝑌) −
௎௥

ଶ௡ ା ଵ
𝜂(𝑌)] =   

−(𝑎 − 2𝑛𝑏)[𝐴(𝑈) + 𝐵(𝑈)] ቂ2𝑛(𝑓ଵ − 𝑓ଷ) −
௥

ଶ௡ ା ଵ
ቃ 𝜂(𝑌)  

−2(𝑛 − 1)𝐵(𝑈)𝜂(𝑌).                        (5.6) 

𝑌 is replaced by 𝜙𝑌  in (5.6), we get 

𝑆(𝜙𝑈, 𝜙𝑌) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝜙𝑈, 𝜙𝑌), provided 𝑓ଵ − 𝑓ଷ ≠ 0.         (5.7)  

Using (2.3) and (2.9) in (5.7), we obtain 

𝑆(𝑈, 𝑌) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝑈, 𝑌).             (5.8)  
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Hence, we have the following theorem: 

Theorem (5.1): An extended nearly  𝜙 − 𝑊෩଼ − recurrent generalized Sasakian space form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) 
is Einstein manifold provided  𝑓ଵ − 𝑓ଷ ≠ 0. 

6. Nearly  𝝓 −Ricci recurrent generalized Sasakian space form 

Definition (6.1).  A generalized Sasakian space form  𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is called nearly 𝜙 −Ricci recurrent 
generalized Sasakian space form if its Ricci tensor 𝑆 satisfies the condition: 

𝜙ଶ൫(𝐷௑𝑄)( 𝑌)൯ = [𝐴(𝑋) + 𝐵(𝑋)]𝑄𝑌 + 𝐵(𝑋)𝑌.            (6.1) 

Using (2.1) in (6.1) we get ` 

−(𝐷௑𝑄)( 𝑌) + 𝜂൫(𝐷௑𝑄)( 𝑌)൯𝜉 = [𝐴(𝑋) + 𝐵(𝑋)]𝑄𝑌 + 𝐵(𝑋)𝑌, 

which gives    

−𝑔(𝐷௑𝑄𝑌, 𝑍) + 𝑆(𝐷௑𝑌, 𝑍) + 𝜂൫(𝐷௑𝑄)( 𝑌)൯𝜂(𝑍) = [𝐴(𝑋) + 𝐵(𝑋)]𝑆(𝑌, 𝑍) 

   +𝐵(𝑋)𝑔(𝑌, 𝑍).      (6.2) 

Putting 𝜉 for 𝑌  in (6.2) and using (2.8) and (2.15), we have 

 

(𝑓ଵ − 𝑓ଷ)𝑆(𝜙𝑋, 𝑍) − 2𝑛(𝑓ଵ − 𝑓ଷ)ଶ𝑔(𝜙𝑋, 𝑍) +  

2𝑛(𝑓ଵ − 𝑓ଷ)[𝐴(𝑋) + 𝐵(𝑋)]𝜂(𝑍) + 𝐵(𝑋)𝜂(𝑍) = 0.         (6.3) 

𝑍 is replaced by 𝜙𝑍, we get 

𝑆(𝜙𝑋, 𝜙𝑍) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝜙𝑋, 𝜙𝑍),  

Provided 𝑓ଵ − 𝑓ଷ ≠ 0.         (6.4)  

Using (2.3) and (2.9) in (6.4), we obtain 

𝑆(𝑋, 𝑍) = 2𝑛(𝑓ଵ − 𝑓ଷ)𝑔(𝑋, 𝑍).        (6.5) 

Hence we have the following theorem: 

Theorem (6.1): A nearly 𝜙 −Ricci recurrent generalized Sasakain space-form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is Einstein 
manifold provided  𝑓ଵ − 𝑓ଷ ≠ 0. 

Again putting 𝑍 = 𝜉 in (6.3) and using (2.1), (2.2) and (2.12), we get 

2𝑛(𝑓ଵ − 𝑓ଷ)𝐴(𝑋) + [2𝑛(𝑓ଵ − 𝑓ଷ) + 1]𝐵(𝑋) = 0.         (6.6) 

Hence we have the following theorem: 

Theorem (6.2): In nearly 𝜙 − Ricci recurrent generalized Sasakain space-form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) , 1-
forms 𝐴 and 𝐵 are in opposite directions.   

7. Nearly  𝝓 − 𝑾෪𝟖 −Ricci recurrent generalized Sasakian space form 

Definition (7.1).  A generalized Sasakian space form  𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is called nearly  𝜙 − 𝑊෩଼ −Ricci 

recurrent generalized Sasakian space form if pseudo 𝑊଼ curvature tensor 𝑊෩଼ satisfies the condition: 

𝜙ଶ൫(𝐷௑𝑄ௐ෩ )( 𝑌)൯ = [𝐴(𝑋) + 𝐵(𝑋)]𝑄ௐ෩ 𝑌 + 𝐵(𝑋)𝑌.            (7.1) 

Using (2.1) in (7.1) we get 

−(𝐷௑𝑄ௐ෩ )( 𝑌) + 𝜂൫(𝐷௑𝑄ௐ෩ )( 𝑌)൯𝜉 = [𝐴(𝑋) + 𝐵(𝑋)]𝑄ௐ෩ 𝑌 + 𝐵(𝑋)𝑌, 

which gives    

−𝑔(𝐷௑𝑄ௐ෩ 𝑌, 𝑍) + 𝑊෩଼(𝐷௑𝑌, 𝑍) + 𝜂൫(𝐷௑𝑄ௐ෩ )( 𝑌)൯𝜂(𝑍) =  
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   [𝐴(𝑋) + 𝐵(𝑋)]𝑊෩଼(𝑌, 𝑍) + 𝐵(𝑋)𝑔(𝑌, 𝑍).          (7.2) 

Putting 𝜉 for 𝑌  in (7.2) and using (2.8), (2.12), (2.15), (2.17) and (2.18), we have 

2𝑛(𝑓ଵ − 𝑓ଷ)ଶ(𝑎 − 2𝑛𝑏)𝑆(𝜙𝑋, 𝑍) =  

−(𝑎 − 2𝑛𝑏) ቂ2𝑛(𝑓ଵ − 𝑓ଷ) + (𝑓ଵ − 𝑓ଷ + 1)
௥

ଶ௡ ା ଵ
ቃ 𝑔(𝜙𝑋, 𝑍) +  

−(𝑎 − 2𝑛𝑏)[𝐴(𝑋) + 𝐵(𝑋)] ቂ2𝑛(𝑓ଵ − 𝑓ଷ) +
௥

ଶ௡ ା ଵ
ቃ 𝜂(𝑍) + 𝐵(𝑋)𝜂(𝑍) = 0.   (7.3)   

  

𝑍 is replaced by 𝜙𝑍 in (7.3), we get 

𝑆(𝜙𝑋, 𝜙𝑍) = 𝜆𝑔(𝜙𝑋, 𝜙𝑍), provided 𝑎 − 2𝑛𝑏 ≠ 0,     (7.4)  

where 𝜆 = −
ଶ௡(௙భି௙య)ା(௙భି௙యାଵ)

ೝ

మ೙ శ భ

ଶ௡(௙భି௙య)
  

Using (2.3) and (2.9) in (7.4), we obtain 

𝑆(𝑋, 𝑍) = 𝜆𝑔(𝑋, 𝑍).        

Hence we have the following theorem: 

Theorem (7.1): A nearly 𝜙 − 𝑊෩଼ −Ricci recurrent generalized Sasakain space-form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is 
Einstein manifold provided 𝑎 − 2𝑛𝑏 ≠ 0 and  𝑓ଵ − 𝑓ଷ ≠ 0. 

Again putting 𝑍 = 𝜉 in (7.3) and using (2.1), (2.2) and (2.12), we get 

𝑟 = −(2𝑛 + 1) ቂ2𝑛(𝑓ଵ − 𝑓ଷ) +
஻(௑)

{஺(௑)ା஻(௑)}(௔ିଶ௡௕)
ቃ.         (7.7) 

Hence we have the following theorem: 

Theorem (7.2): The scalar curvature of nearly 𝜙 − 𝑊෩଼ −Ricci recurrent generalized Sasakain space-
form 𝑀(𝑓ଵ, 𝑓ଶ, 𝑓ଷ) is given by (4.7), provided 𝑎 − 2𝑛𝑏 ≠ 0 and  𝐴 + 𝐵 ≠ 0. 
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