

On quasi - conformally flat LP-Sasakian manifold with a coefficient a

Subhash Chandra Singh and Ashwamedh Mourya*

Kunwar Singh Inter College, Ballia-277001
*Department of mathematics, Ashoka Institute of Technology and management, Varanasi

Email: mashwamedh@gmail.com

Abstract

The notion of Lorentzian almost paracontact manifolds with a coefficient α has been introduced and studied by De et al (2002). In the present paper we investigate some properties of quasi-conformally flat LP-Sasakian manifold with a coefficient α .

Key words- LP-Sasakian manifold with a coefficient α , quasi-conformal curvature tensor and manifold of constant curvature.

1. Introduction

In 1989, Matsumoto introduced the notion of LP-Sasakian manifolds. Then Mihai and Rosca (1992) introduced the same notation independently and they obtained several results on this manifold. In a recent paper De, Shaikh and Sengupta (2002) introduced the notion of LP-Sasakian manifold with a coefficient a which generalized the notion of LP-Sasakian manifolds. Recently T.Ekawa and his coauthors (1996 and 1997) studied Sasakian manifold with a Lorentzian metric and obtained several results on this manifold. De, Jun and Shaikh (2002) and Das and Sengupta (2006) studied conformally flat LP-Sasakian manifold with a coefficient α. In 2007, Bagewadi, Prakasha and Venkatesha studied the pseudo projectively flat LP-Sasakian manifold with a coefficient α. The existence of a product submanifold of LP-Sasakian manifold with a coefficient α have been proved by Sengupta, De and Jun in 2003. Moreover, certain curvature conditions on an LP-Sasakian manifold with a coefficient α obtained by De and Arslan (2009). Recently in 2017, Das proved that a second order symmetric parallel tensor an LP-Sasakian manifold with a coefficient α is a constant multiple of the associated metric tensor. In the present paper, we study quasi conformally flat LP-Sasakian manifold with a coefficient α. Here we prove that in a quasi-conformally flat LP-Sasakian manifold with a coefficient α the characteristic vector field is a concircular vector field if and only if the manifold is η -Einstein and a quasi-conformally LP-Sasakian manifold with a coefficient α is a manifold of constant curvature if scalar curvature r is a constant, provided $a + 2(n-1)b \neq 0$.

2. Preliminaries

Let M be an n-dimensional differentiable manifold endowed with a (1,1) tensor field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric of type (0,2) such that for each point $p \in M$, the tensor $g_p: T_pM \times T_pM \to R$ is non-degenerate inner product of signature $(-,+,\cdots,+)$, where T_pM denotes the tangent vector space of M at p and R is the real number space which satisfies

$$\eta(\xi) = -1, \ \phi^2 X = X + \eta(X)\xi, \ g(X,\xi) = \eta(X), D_X \xi = \phi X,$$
 (2.1)

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y), \tag{2.2}$$

for all vector fields X and Y. Then such a structure (ϕ, ξ, η, g) is termed as Lorentzian almost paracontact structure and the manifold M with the structure (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold M. In the Lorentzian almost paracontact manifold, the following relation hold De, Shaikh and Sengupta (2002)

$$\phi \xi = 0, \eta(\phi X) = 0, \text{ rank } \phi = n - 1. \tag{2.3}$$

If we put

$$\omega(X,Y) = \omega(Y,X),\tag{2.4}$$

where $\omega(X,Y)$ is a symmetric (0, 2) type tensor field and $\omega(X,Y) = g(X,\phi Y)$.

In the Lorentzian almost paracontact manifold M, if it satisfies the following relations:

$$(D_Z \omega)(X,Y) = \alpha[\{g(X,Z) + \eta(X)\eta(Z)\}\eta(Y) + \{g(Y,Z) + \eta(Y)\eta(Z)\}\eta(X)],$$
(2.5)

and

$$\omega(X,Y) = \frac{1}{\alpha}(D_X \eta)(Y),\tag{2.6}$$

hold, where D denotes the operator of covariant differentiation with respect to the Lorentzian metric g, then M is called an LP-Sasakian manifold with coefficient α . An LP-Sasakian manifold with coefficient 1 is an LP-Sasakian manifold Matsumoto (1989). If a vector field V satisfies the equation of the form $(D_X V) = \beta X + T(X)V$, where β is a non-zero scalar function and T is a covariant vector field, then V is called a torse forming vector field Yano (1944). In a Lorentzian manifold M, if we assume that ξ is a unit torse forming vector field, then

$$(D_X \eta) Y = \alpha [g(X, Y) + \eta(X) \eta(Y)], \tag{2.7}$$

where α is a non-zero scalar function. Hence the manifold admitting a unit torse forming vector field satisfying (2.7) is an LP-Sasakian manifold with coefficient α . And if η satisfies

$$(D_X \eta)Y = \varepsilon[g(X,Y) + \eta(X)\eta(Y)], \varepsilon^2 = 1. \tag{2.8}$$

Then M is called an LSP- Sasakian manifold Matsumoto (1989). In particular, if α satisfies equation (2.7) and the equation of the following form

$$\alpha(X) = P \eta(X), \alpha(X) = D_X \alpha, \tag{2.9}$$

where P is a scalar function, then ξ is called a concircular vector field. Let us consider an LP-Sasakian manifold M with a structure (ϕ, ξ, η, g) and with a coefficient α . Then we have:

$$\eta(R(X,Y)Z) = -\alpha(X)\,\omega(Y,Z) + \alpha(Y)\,\omega(X,Z) + \alpha^2[\,\eta(X)\,g(Y,Z) - \eta(Y)\,g(X,Z)],\tag{2.10}$$

and

$$Ric(X,\xi) = -\psi \alpha(X) + (n-1)\alpha^2 \eta(X) + \alpha \phi X, Trace(\phi) = \psi. \tag{2.11}$$

where R and Ric denote respectively the curvature tensor and Ricci tensor of the manifold.

Furthermore, quasi-conformal curvature tensor on a Riemannian manifold introduced by Chaki and Ghosh (1997) as follows

$$C'(X,Y)Z = a R(X,Y)Z + b[Ric(Y,Z)X - Ric(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] - \frac{r}{n} (\frac{a}{n-1} + 2b) (g(Y,Z)X - g(X,Z)Y),$$
(2.12)

where a and b are constant Q and r are the Ricci operator defined by Ric(X,Y) = g(QX,Y) and scalar curvature of the manifold. If a = 1 and $b = -\frac{1}{n-2}$ then (2.12) takes the form

$$\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} \left[Ric(Y,Z)X - Ric(X,Z)Y + g(Y,Z)QX - g(X,Z)QY \right] + \frac{r}{(n-1)(n-2)} \left[g(Y,Z)X - g(X,Z)Y \right] = C = \text{Conformal curvature}$$

tensor.

Now, we state the following results which are used in the later section.

Lemma (2.1) (De, Shaikh and Sengupta, 2002). In an LP-Sasakian manifold with a non constant coefficient α , one of the following cases occurs:

(i)
$$\psi^2 = (n-1)^2$$
 (ii) $\alpha(Y) = -P \eta(Y)$, where $P = \alpha(\xi)$.

Lemma (2.2) (De, Shaikh and Sengupta, 2002). In Lorentzian almost paracontact manifold with structure (ϕ, ξ, η, g) satisfying $\omega(X, Y) = \frac{1}{\alpha}(D_X \eta)(Y)$, where α is a non-zero scalar function the vector field ξ is torse forming if and only if $\psi^2 = (n-1)^2$ holds.

3. Quasi-conformally flat LP-Sasakian manifold with a coefficient α

Let us consider a quasi-conformally flat LP-Sasakian manifold M with a coefficient α . First suppose that α is not constant. Then since quasi-conformal curvature vanishes, then from (2.12), we get

$$'R(X,Y,Z,W) = -\frac{b}{a} [Ric(Y,Z)g(X,W) - Ric(X,Z)g(Y,W) + g(Y,Z)Ric(X,W) - g(X,Z)Ric(Y,W)] - \frac{r}{n} (\frac{1}{n-1} + \frac{2b}{a}) (g(Y,Z)g(X,W) - g(X,Z)g(Y,W),$$
 (3.1)

where R(X, Y, Z, W) = g(R(X, Y)Z, W).

Putting ξ for W in (3.1) and then using (2.2), (2.10), and (2.11), we get

$$-\alpha(X)\omega(Y,Z) + \alpha(Y)\omega(X,Z) + \alpha^{2}[\eta(X)g(Y,Z) - \eta(Y)g(X,Z)] =$$

$$-\frac{b}{a}[Ric(Y,Z)\eta(X) - Ric(X,Z)\eta(Y) + g(Y,Z)\{-\psi\alpha(X) + (n-1)\alpha^{2}\eta(X) + \alpha(\phi X)\} - g(X,Z)\{-\psi\alpha(Y) + (n-1)\alpha^{2}\eta(Y) + \alpha(\phi Y)\} + \frac{r}{n}(\frac{1}{n-1} + \frac{2b}{a})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].$$
(3.2)

Again if we put ξ for X in (3.2) and then using (2.3) and (2.11), we obtain

$$Ric (Y,Z) = \left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - \psi P - (n-1)\alpha^2 - \frac{a}{b}\alpha^2 \right] g(Y,Z) +$$

$$\left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - 2(n-1)\alpha^2 - \frac{a}{b}\alpha^2 \right] \eta(Y)\eta(Z) + [\psi \alpha(Z) - \alpha (\phi Z)]\eta(Y)$$

$$+ [\psi \alpha(Y) - \alpha (\phi Y)]\eta(Z) - \frac{a}{b}P\omega(Y,Z).$$
(3.3)

Remark 1. If we put a = 1 and $b = -\frac{1}{n-2}$ in (3.3) we get

$$Ric (Y,Z) = \left[\frac{r}{(n-1)} - \psi P - \alpha^2\right] g(Y,Z) + \left[\frac{r}{(n-1)} - n \alpha^2\right] \eta(Y) \eta(Z)$$
$$+ \left[\psi \alpha(Z) - \alpha(\phi Z)\right] \eta(Y) + \left[\psi \alpha(Y) - \alpha(\phi Y)\right] \eta(Z) + (n-2)P\omega(Y,Z),$$

which is same as was obtained by De, Jun and Shaikh (2002).

We now suppose that M^n is η -Einstein. If an LP-Sasakian manifold M^n with a coefficient α satisfies the relation $Ric(X,Y) = \lambda g(X,Y) + \mu \eta(X) \eta(Y)$, where λ and μ are the associated

function on the manifold, then the manifold M^n is called η –Einstein manifold. Then we have De, Shaikh and Sengupta (2002),

$$Ric(X,Y) = \left[\frac{r}{(n-1)} - \frac{\psi P}{n-1} - \alpha^2\right] g(X,Y) + \left[\frac{r}{(n-1)} - n \alpha^2 - \frac{n\psi P}{n-1}\right] \eta(X) \eta(Y). \tag{3.4}$$

Putting e_i for X and Y in (3.4), where $\{e_i\}$ is an orthonormal basis of the tangent space at a point of the manifold and taking summation over $1 \le i \le n$, we get

$$r = n(n-1)\alpha^2 + n\psi P. \tag{3.5}$$

By virtue of (3.3) and (3.4) we get

$$\left[\frac{r}{(n-1)} - \frac{\psi P}{n-1} - \alpha^{2}\right] g(Y,Z) + \left[\frac{r}{(n-1)} - n \alpha^{2} - \frac{n\psi P}{n-1}\right] \eta(Y) \eta(Z) =
\left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - \psi P - (n-1)\alpha^{2} - \frac{a}{b}\alpha^{2}\right] g(Y,Z) +
\left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - 2(n-1)\alpha^{2} - \frac{a}{b}\alpha^{2}\right] \eta(Y) \eta(Z) + \left[\psi \alpha(Z) - \alpha(\phi Z)\right] \eta(Y) + \left[\psi \alpha(Y) - \alpha(\phi Y)\right] \eta(Z) - \frac{a}{b} P \omega(Y,Z).$$
(3.6)

Putting ξ for Y in (3.6) and replacing Z by Y in resulting equation, we get

$$\psi \alpha(Y) - \alpha (\phi Y) = -\psi P \eta(Y) \text{ for all } Y. \tag{3.7}$$

Using (3.7) in (3.6) and then by virtue of (3.5), we get

$$\frac{ab}{P} \left[\frac{\psi}{n-1} \left\{ g(Y,Z) + \eta(Y) \, \eta(Z) \right\} - \, \omega(Y,Z) \, \right] = 0 \,. \tag{3.8}$$

If P=0, then from (3.7) we get $\psi \alpha(Y)=\alpha(\phi Y)$. Thus ψ is equal to ± 1 as ψ is eigen value of the matrix ϕ . Hence by virtue of Lemma 2, we get $\alpha(Y)=0$ for all Y and so α is constant, which contradicts our assumption. Consequently we have $P\neq 0$ and hence from (3.8), we get

$$\frac{ab}{P} \left[\frac{\psi}{n-1} \left\{ g(Y,Z) + \eta(Y) \, \eta(Z) \right\} - \, \omega(Y,Z) \, \right] = 0 \,. \tag{3.9}$$

Putting ϕY for Y in (3.9) and then (2.3), we obtain

$$\frac{a}{b} \left[\frac{\psi}{n-1} \ \omega(Y, Z) - \{ g(Y, Z) + \eta(Y) \ \eta(Z) \} \right] = 0.$$
(3.10)

Combing (3.9) and (3.10) we get

$$[\psi^2 - (n-1)^2][g(Y,Z) + \eta(Y)\,\eta(Z)] = 0.$$

This gives
$$[\psi^2 - (n-1)^2] = 0.$$
 (3.11)

Hence Lemma (2.2) proves that ξ is a torse forming.

Now we have $(D_X \eta)Y = \beta [g(X,Y) + \eta(X) \eta(Y)]$. Then from (2.6) we get

$$\omega(X,Y) = g\left(\frac{\beta}{\alpha}(X + \eta(X)\xi), Y\right)$$
 and $\omega(X,Y) = g(\phi X, Y)$.

Since g is non-singular, we have

$$\phi X = \frac{\beta}{\alpha} (X + \eta(X)\xi.$$

and

$$\phi^2(X) = \left(\frac{\beta}{\alpha}\right)^2 (X + \eta(X)\xi).$$

It follows from (2.1) that $\left(\frac{\beta}{\alpha}\right)^2 = 1$ and hence $\alpha = \pm \beta$. Thus we have

$$\phi X = \pm (X + \eta(X)\xi).$$

By virtue of (3.7), $\alpha(Y) = -P \eta(Y)$. Thus we conclude that ξ is a concircular vector field. Conversely we suppose that ξ is a concircular vector field. Then we have the equation of the form $(D_X \eta)Y = \beta[g(X,Y) + \eta(X)\eta(Y)]$, where β is a certain function and $D_X \beta = q \eta(X)$ for a certain scalar function q. Hence by virtue of (2.6) we have $\alpha = \pm \beta$. Thus we have $(D_X \eta)Y = \varepsilon[g(X,Y) + \eta(X)\eta(Y)]$, $\varepsilon^2 = 1$, $\psi = \varepsilon(n-1)$, $D_X \alpha = \alpha(X) = P \eta(Y)$, $P = \varepsilon q$. Using these relations in (3.3) and (3.7), it follows that M^n is η -Einstein. Thus we have the following theorem:

Theorem (3.1) In a quasi-conformally flat LP-Sasakian manifold M^n with a non-constant coefficient α , the characteristic vector field ξ is a concircular vector field if and only if M^n is η -Einstein.

Now we suppose that α is constant. In this case, the following relations hold good Bagewadi, Prakasha and Venkatesha (2007):

$$\eta(R(X,Y)Z) = \alpha^2 [\eta(X) g(Y,Z) - \eta(Y) g(X,Z)], \tag{3.12}$$

and

$$Ric(X,\xi) = (n-1)\alpha^2 \eta(X).$$
 (3.13)

Putting ξ for W in (3.1) and then using (2.2), (3.12) and (3.13) we get

$$\alpha^{2} \left[\eta(X)g(Y,Z) - \eta(Y)g(X,Z) \right] = -\frac{b}{a} \left[Ric(Y,Z) \eta(X) - Ric(X,Z) \eta(Y) + g(Y,Z)(n-1)\alpha^{2} \eta(X) - g(X,Z)(n-1)\alpha^{2} \eta(Y) \right] + \frac{r}{n} \left(\frac{1}{n-1} + \frac{2b}{a} \right) \left[g(Y,Z) \eta(X) - g(X,Z) \eta(Y) \right].$$
(3.14)

Putting ξ for X in (3.14) and then using (3.13) we get,

$$Ric (Y,Z) = \left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - (n-1)\alpha^2 - \frac{a}{b}\alpha^2 \right] g(Y,Z) + \left[\frac{ar}{bn(n-1)} + \frac{2r}{n} - 2(n-1)\alpha^2 - \frac{a}{b}\alpha^2 \right] \eta(Y)\eta(Z).$$
(3.15)

Remark 2. If we put a = 1 and $b = -\frac{1}{n-2}$ in (3.15), we get

$$Ric (Y,Z) = \left[\frac{r}{(n-1)} - \alpha^2\right] g(Y,Z) + \left[\frac{r}{(n-1)} - n \alpha^2\right] \eta(Y) \eta(Z).$$

which is same as was obtained by De, Jun and Shaikh (2002). From (3.15) we can state the following theorem:

Theorem (3.2) A quasi-conformally flat LP-Sasakian manifold M^n with a constant coefficient α is always an η - Einstein manifold.

Differentiating (3.15) covariantly along X and making the use of (2.6), we get

$$(D_X Ric)(Y, Z) = \frac{dr(X)}{n} \left[\frac{a}{b(n-1)} + 2 \right] \left[g(Y, Z) + \eta(Y) \eta(Z) \right] + \left[-2(n-1)\alpha^2 - \frac{a}{b}\alpha^2 + \frac{r}{n} \left\{ \frac{a}{b(n-1)} + 2 \right\} \right].$$

$$\left[\alpha \{ \omega(X, Y) \} \eta(Z) + \{ \omega(X, Y) \} \eta(Z).$$

This equation implies that

$$(D_X Ric)(Y, Z) - (D_Y Ric)(X, Z) = \frac{dr(X)}{n} \left[\frac{a}{b(n-1)} + 2 \right] [g(Y, Z) + \eta(Y)\eta(Z)]$$

$$-\frac{dr(Y)}{n} \left[\frac{a}{b(n-1)} + 2 \right] \left[g(X,Z) + \eta(X)\eta(Z) \right] + \left[-2(n-1)\alpha^2 - \frac{a}{b}\alpha^2 + \frac{r}{n} \left\{ \frac{a}{b(n-1)} + 2 \right\} \right].$$

$$\left[\alpha \{ \omega(X,Z) \} \eta(Y) - \omega(X,Z) \eta(X) \} \right]. \tag{3.16}$$

On the other hand in our case, since we have $(D_W \tilde{C})(X,Y)Z = 0 \Rightarrow divC$ where \tilde{C} is quasi-conformal curvature tensor and "div" denotes divergence. So for n > 3, $div\tilde{C} = 0$ gives

$$(D_X Ric)(Y, Z) - (D_Y Ric)(X, Z) = \frac{1}{n(n-1)(a+b)} [a - (n-1)(n-2)b]$$

$$[g(Y, Z) dr(X) - g(X, Z) dr(Y)]. \tag{3.17}$$

From (3.16) and (3.17), we get

$$\frac{dr(X)}{n} \left[\frac{a}{b(n-1)} + 2 \right] \left[g(Y,Z) + \eta(Y)\eta(Z) \right] - \frac{dr(Y)}{n} \left[\frac{a}{b(n-1)} + 2 \right].$$

$$\left[g(X,Z) + \eta(X)\eta(Z) \right] + \left[-2(n-1)\alpha^2 - \frac{a}{b}\alpha^2 + \frac{r}{n} \left\{ \frac{a}{b(n-1)} + 2 \right\} \right]$$

$$\left[\alpha\{\omega(X,Z) \eta(Y) - \omega(X,Z) \eta(X) \} \right] = \frac{1}{n(n-1)(a+b)} \left[a - (n-1)(n-2)b \right].$$

$$\left[g(Y,Z) dr(X) - g(X,Z) dr(Y) \right].$$
(3.18)

If r is constant then from (3.18), we get

$$\left(\frac{a+2(n-1)b}{b}\right)\left(\frac{r}{n(n-1)} - \alpha^2\right) = 0. \text{ Hence from this, we can write,}$$

$$r = n(n-1)\alpha^2, a + 2(n-1)b \neq 0. \tag{3.19}$$

Using (3.15) and (3.19) in (3.1), we get

$${}'R(X,Y,Z,W) = \alpha^2 [g(Y,Z) g(X,W) - g(X,Z)g(Y,W)]. \tag{3.20}$$

Thus, we have the following theorem:

Theorem (3.3) In a quasi-conformally flat LP-Sasakian manifold M^n with a constant coefficient α , if the scalar curvature r is constant then manifold is of constant curvature, provided $\alpha + 2(n-1)b \neq 0$.

Contracting (3.15), we get

$$r = n(n-1)\alpha^{2} \text{ if } a + (n-2) b \neq 0.$$
(3.21)

Using (3.21) in (3.15) we get

$$Ric(Y,Z) = \alpha^2(n-1)g(Y,Z), \quad a + (n-2)b \neq 0.$$
 (3.22)

Using (3.22) in (3.1), we obtain

$${}'R(X,Y,Z,W) = \alpha^2 [g(Y,Z) g(X,W) - g(X,Z) g(Y,W)].$$
(3.23)

Hence we can state the following theorem:

Theorem (3.4) In a quasi-conformally flat LP-Sasakian manifold M^n with a constant coefficient α , then manifold is of constant curvature, provided $\alpha + (n-2)b \neq 0$.

From (2.2), (3.22) and (3.23), we can state the following theorem:

Theorem (3.4) In a quasi-conformally flat LP-Sasakian manifold M^n with a constant coefficient α , if $a + (n-2)b \neq 0$ the following relations hold:

(i)
$$R(X,\xi)Z = \alpha^2 [\eta(Z)X - g(X,Z)\xi],$$
 (3.24)

(ii)
$$R(\xi, X)Y = \alpha^2 [g(X, Y)\xi - \eta(Y)X],$$
 (3.25)

- (iii) $R(X,Y)\xi = \alpha^2 [\eta(Y)X \eta(X)Y],$ (3.26)
- (iv) $Ric(X,\xi) = \alpha^2(n-1)\eta(X),$ (3.27)
- (v) $Ric(\xi, X) = \alpha^2 (n-1)\eta(X),$ (3.28)
- (vi) $Ric(\phi X, \phi Y) = Ric(X, Y) + \alpha^2(n-1)\eta(X)\eta(X)$. (3.29)

References

- Bagewadi, C. S., Prakasha, D. G. and Venkatesha (2007). On pseudo projectively flat LP-Sasakian manifold with coefficient α, Annal. Univer. Mariae Curie-Sklodowska Lubi.-Polon., LXI, Sec.A: 1-8.
- 2. Chaki, M. C. and Ghosh, M. L. (1997). On quasi-conformally conservative flat and quasi-conformally conservative Riemannian manifold, Anal. Stiin. Ale. Univ. "AL.I.Cuza", XLIII.
- 3. De, U. C., Shaikh, A. A. and Jun, J. B. (2002). On conformally flat LP-Sasakian manifold with coefficient α, Nihonkai, Math Jour., 13(2): 121-131.
- 4. De, U. C., Shaikh, A. A. and Sengupta, A. (2002). On LP-Sasakian manifold with coefficient α, Kyungpook Math Jour., 42(1): 177-186.
- 5. Das, L. S. and Sengupta, J. (2006). On conformally flat LP-Sasakian manifold with coefficient α, Bull. Cal. Math Soc., 98(4): 377-382.
- 6. De, U. C. and Arslan, K. (2009). Certain curvature conditions on an LP-Sasakian manifold with coefficient α, Bull. Korean Math. Soc., 46(3): 401-408.
- 7. Das, L. S. (2017). Second order parallel tensors on an LP-Sasakian manifold with coefficient α , Acta Math. Acad. Paed. Nyire, 33: 85-89.
- 8. Ikawa, T. and Erdogan, M. (1996). Sasakian manifold with Lorentzian metric, Kyungpook Math. J., 35(3): 517-526.
- 9. Ikawa, T. and Jun, J. B. (1997). On sectional curvature of a normal contact Lorentzian manifolds, Korean J. Math. Sci., 4: 27-33.
- 10. Ion, M., Shaikh, A. A. and De, U. C. (1999). On Lorentzian Para-Sasakian manifolds, Korean J. Math. Sci., 6: 1-13.
- 11. Matsumoto, K. (1998). On Lorentzian paracontact manifolds, Bull. Yamagata Univ., Nat., Sci., 12: 151-156.
- 12. Mihai, I. and Rosca, R. (1992). On Lorentzian Para-Sasakian manifolds, Classical analysis, World Sci., Publ., Singapore, 155-169.
- 13. Prasad, B. (2002). On pseudo projective curvature tensor on a Riemannian manifold, Bull. Call. Math. Soc., 94(3): 163-166.
- 14. Sengupta, A. K., De, U. C. and Jun, J. B. (2003). Existence of a product submanifolds of an LP-Sasakian manifold with coefficient *α*, Bull. Korean Math. Soc., 40(4): 633-639.
- 15. Yano, K. (1944). On the torse-forming direction in Riemannian space, Proc. Imp. Acad. Tokyo, 20: 340-345.

Received on 28.07.2023 and accepted on 29.11.2023