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Abstract

The object of this paper is to study a type of Lorentzian § —Kenmotsu manifold called Lo-
rentzian f — Kenmotsu (SPS), — manifold and Lorentzian f — Kenmotsu (SPRS),, — manifold
(n # 3). An example of non-existence are also given of such manifolds. Finally, we derive an ex-
pression for pressure and density for a perfect flow in the Lorentzian f —Kenmotsu manifolds.
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Introduction

In 1969, Tanno classified connected almost contact metric manifolds whose automorphism
groups pass the maximum dimension. For such a manifold, the sectional curvatures of plane sections
containing £ are a constant, say c¢. He showed that they can be divided into three classes:
(1) Homogeneous normal contact Riemannian manifolds with ¢ > 0,
(2) Global Riemannian products of a line or a circle with a Kéhler manifold of constant holomorphic
sectional curvature if ¢ = 0 and
(3) A warped product space R X C ifc < 0.

It is know that the manifolds of class (1) are characterized by admitting a Sasakian structure.
The manifold of class (2) is characterized by a tensorial relation admitting a cosymplectic structure.
Kenmotsu (1972) characterized the differential geometric properties of the manifolds of class (3); the
structure so obtained is now known as Kenmotsu structure. In general, these structures are not Sasa-
kian (1972). In the Gray-Hervellaclassifition of almost Hermition manifolds (1980), there appears a
class W, of Hermitian manifolds, which are closely related to locally conformal Kaehler manifolds
(1998). An almost contact metric structure on a manifold M is called a trans-Sasakian structure
(1985) if the product manifold M X R belongs to the class W, . The class Cg @ Cs5 (1989) coincides
with the class of the trans-Sasakian structures of type (&, ). In fact in (1989), local nature of the two
subclasses Cs and Cgstructures of trans-Sasakian structures are characterized completely.
We note that trans-Sasakian structures of type (0,0), (0,8 ) and (a, 0)are cosymplectic (1976), -
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Kenmotsu (1981) and a-Sasakian (1981) respectively. In (1999-2000) it is proved that trans-
Sasakian structures are generalized quasi-Sasakian (1991). Thus, trans-Sasakian structures also pro-
vide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (¢, &,7n,g) on M is called a trans-Sasakian structures (1985) if
(M %X R,],G,) belongs to the class W, (1980), where J is the almost complex structure on M X R
defined by

J&X, fd/dt) = (X — f §,n(X)fd/dt) (L.1)

for all vector fields X on M, smooth functions f on M X R and G is the product metric on M X R.
This may be expressed by the condition (1990)

(Dxp) = a(g(X,Y)§ —n(¥)X) + B(g(¢X,Y)§ —n(Y)pX) (1.2)

for some smooth functions on M and we say that the trans-Sasakian structure is of type (, ).
Theorem 1.1: A trans-Sasakian structure of type (a, f) with fa non-zero constant is always -
Kenmotsu.

In this case fbecomes a constant. If § = 1, then f-Kenmotsu manifold is Kenmotsu.
2. Preliminaries

A differentiable manifold M of dimension n is called Lorentzian f-Kenmotsu manifold if it ad-
mits a (1,1)- tensor field ¢, a contravariant vector field £, a covariant vector field nand a Lorentzian
metric g which satisfy

n(§) =-1¢¢=0,n(¢X) =0, (2.1)
P2X = X +n(X)¢, g(X,§) =n(X), (2.2)
9(@X,¢Y) = g(X,Y) + n(X)n(¥), (23)

forall X,Y € y(M).
A Lorentzian f-Kenmotsu manifold M satisfies
Dx$ = BI(X — n(X)$], 24
(Dxm(Y) = Blg(X,Y) = n(X)n(Y)], (25)
where D denotes the covariant differentiation with respect to the Lorentzian metric g.
Further, on a Lorentzian f-Kenmotsu manifold M the following relations hold (Bagewadi and Gi-
rish Kumar (2004),Bagewadi and Venkatesha (2007), Bagewadietal (2008), Prakashaetal (2008)),

nRX,Y)Z) = g(R(X,Y)Z,§) = B*[g(X, 2)n(¥) — g(¥,Z)n(X)], (2.6)
R X)Y = B2 [n(Y)X — g(X,Y)¢], (2.7)
R(X,Y)¢ = B*m(X)Y —n(¥Y)X], (2.3)
SX,§) = —(n—-1Dp*nX), (2.9)
Q¢ =—(n—-1p%, (2.10)
5¢,8) = m—-1)p% (2.11)

for any vector fields X, Yand Z, where R(X,Y)Z is the Riemannian curvature tensor and Ric denotes
the Ricci tensor.
A non- flat Riemannian manifold (M™, g) (n > 3) is said to be a pseudo-symmetric in the
sense of Chaki (1987), if it satisfies the relation
(DxR)(Y,Z,W,U) =2AX)R(Y,Z,W,U)+ A(Y)R(X,Z,W,U) + A(Z)R(Y,X,W,U)
+ AW)HR(Y,Z,X,U) + A()R(Y,Z, W,X)
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That is
(DxRY(Y,Z,W) = 2AX)RY,Z,W)+ AY)R(X,Z, W) + A(Z)R(Y,X, W)
+ AWHR(Y,Z,X) + g(R(Y,Z, W), X)p
for any vector field X, Y, Z, W and U,where R is the Riemannian curvature tensor of the manifold. A
is non-zero 1-form such that g(X, p) = A(X) for every vector field X. Such an n-dimensional mani-
fold was denoted by (PS),,. Pseudo symmetric manifolds in the sense of Chaki have been studied by
Chaki and De (1989), De, Murathan and Ozgur (2010), Ozenand Altay (), Tarafdar(1991,1995) and
many others.
A non-flatRiemaniann manifold (M™, g)(n > 3) is said to be pseudo-Ricci symmetric (1988)
if its Ricci tensor Ric of type (0,2) is not identically zero and satisfies the condition,
(DxRic)(Y,Z) = 2A(X)Ric(Y,Z) + A(Y)Ric(X,Z) + A(Z)Ric(Y,Z)
for any vector field X, Y, Z,where Ais a non-zero 1-form such that g(X, p) = A(X) for every vector
field X. Such an n-dimensional manifold is denoted by (PRS),,. (PRS),, manifold also studied by
Arslan(2001), Chaki and Saha(1994), De and Mazumdar(1998), Ozen (2011) and many others.
In 1995, Tarafdar and Jawarneh (1995) introduced a type of non-flat Riemannian manifold
(M™, g)(n > 3)whose curvature tensor R satisfies the condition
(DxRY(Y,Z2)W = 2AXORY,Z2)W + A(V)RX,Z2)W +
A(Z)RY, X)W + A(W)R(Y,Z)X, (2.12)
where A is a non zero 1-form satisfying

9g&X,p) = AX) (2.13)
for every vector field X and D denotes the covariant differentiation with respect to g. Such a mani-
fold was called by them a semi-pseudo-symmetric manifold, A was called its associated 1-form and
an n-dimensional manifold of this kind was denoted by(SPS),. In a subsequent paper Tarafdar and
Jawarneh (1993), introduced another type of non-flat Riemannian manifolds (M™, g)(n > 3), whose
Ricci tensor of type (0,2) satisfies the condition,

(DxRic)(Y,Z) = A(Y)Ric(X,Z) + A(Z)Ric(X,Y), (2.14)
where symbols have their usual meanings. Such a manifold was called by them a semi-pseudo-Ricci-
symmetric manifold and an n-dimensional manifold of this kind was denoted by (SPRS),,.

Some contributions in this direction is due to Prasad, Trafdar&Jawarneh,they discussed some aspect
in (1998), (1993), (1995), (2011).

In the present paper we proved that Lorentzian f-Kenmotsu manifolds essentially do not admit
neither semi-pseudo-symmetric nor semi-pseudo Ricci-symmetric structures with non trivial exam-
ple.

3. Lorentzian 3-Kenmotsu(SPS),,-manifold (n > 3)

In this section, we assume that an n-dimensional (SPS),(n > 3) is a Lorentzian f-Kenmotsu

manifold. Now we have

(DxRic)(Y,&) = DxRic(Y,&) — Ric(DyY,&) — Ric(Y,Dxé). (3.1)
Using (2.9) in (3.1), we get
(DxRic)(Y,§) = —(n—1)B*g(Dx¢,Y) — Ric(¥,Dxd). (3.2)

From (2.12), we have
(DxRic)(Y,Z) = 2A(X)Ric(Y,Z) + A(Y)Ric(X,Z) +
A(Z)Ric(Y,X) + A(R(X,Y)Z). (3.3)
Putting € for Z in (3.3), we get
(DxRic)(Y,§) = =2(n — DBZAX)N(Y) — 2 (n — DAXY)n(X) +
A(®Ric(Y,X) + A(RX,E). 3.4)
In view of (2.6}), (3.4) reduces to
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(DxRic)(Y,§) = —2nf2AX)n(Y) — p*(n — A )In(X)
+B2AX)n(Y) + A(®)Ric(Y,X) (3.5
In view of (3.2) and (3.5), we have
—2nf2AX)n(Y) — 2 (n — 2)AWINX) + BZAXN(Y) + AG)Ric(Y, X)

= —(n— DF*G(DxE,Y) — Ric(Y,Dx$). (3.6)

Putting ¢ for Xin (3.6), we obtain

B2 (Bn — 2)A(EM(Y) — (n — 2)A(Y)] = 0. (3.7
Again putting for Yin (3.7), we obtain

B?A(§) = 0. (3.9)
Hence, from (3.8) and (3.7), we get

B2A(Y)=0. (3.9
But 82 # 0. Hence from (3.9), we obtain

A(Y) =0,

which is inadmissible by the definition of (SPS),.\
Thus, we have the following theorem:
Theorem 3.1: A (SPS),, cannot be a Lorentzian $-Kenmotsu manifold, provided 82 # 0.
4. Example:
Let us consider the 3-dimensional manifold M = {(x,y,z) €R3,z # 0}, where (x,y,z) are
standard co-ordinate in R3.
We choose the vector fields

— Bz 0 — Bz 0 -9
e =e P e, e 3y’ es P

which is linearly independently at each point of M.
Let g be the Lorentzian metric defined by

g(e;, ej) = {0’ i #j
Let n be the 1-form which satisfies the relation

n(es) = -1
Let ¢ be the (1,1) tensor field defined by

pe; = —ey, pe; = —ey, pes = 0.
Then, we have

¢*U =U + n(U)ezand g(¢pU,¢ W)= g(U,W) +nU)n(W),
for any U, Wey (M).
Thus for e3 = &, (¢, &, 1, g) defines an almost LP contact structure on y(M).
Let D be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature
tensor of g.
Then we have

ler, e2] =0, [e1, e3] = Pes, [ez €3] = Bey.
The Riemannian connection $D$ of the metric is given by

29(DxY,2) =Xg(Y,Z) +Yg(X,Z) — Zg(X,Y) — g(X,[Y, Z])
which is know as Koszul's formula.
Koszul's formula yields

D, e = Bes, D, e, = 0, D, e; = Bes,
De,eq = 0, D, e, = Bes, D, e3 = Be;
De3€1 = 0, De3ez = 0, De363 =0.

From above it can be easily seen that M3(¢, &, 7, g)is a Lorentzian f-Kenmotsu manifold .
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It is known that
R(X,Y)Z = DxDyZ — DyDx Z — Dix y|Z. 4.1)

With the help of the above results and using eq. (4.1), we can easily calculate the non-vanishing
components of the curvature tensor as follows

R(ey, ex)e; = —PB%e;  R(ey,ex)e; = B?eq, R(ey,ez)es = 0,

R(ez,e3)e; =0, R(epez)e; = —f%es, R(ezez)e; = —fe,,

R(ei,e3)e; = —B%e3, R(eg,ez)e; = 0, R(ey,e3)e; = —fey,

R(e1,e1)e; = R(ey,e1)e; = R(ep, e1)es = 0,

R(ey, e2)e; = R(ey, e2)e; = R(ey, e3)e3 =0,

R(es, e3)e; = R(es, e3)e; = R(es, e3)ez = 0.

and their covariant derivative are given by
(DelR)(e1r€2)e1 = (DeZR)(e1'92)e1 = (De3R)(e1r€2)e1 =0,
(De,R)(ez, e3)e; = (De,R)(ez, €3)e, = (De,R)(ez,€3)e3 =0,
(DelR)(el,e3)e1 = (DezR)(epe?,)ez = (De3R)(el,e3)e3 = 0.
We now verify that 3-dimensional Lorentzian f-Kenmotsu manifold is not semi-pseudo symmetric
i.e. it satisfies the relation (2.12).
Let us now consider
A(e;)) = 0 for i = 1,2,3
at any point X € y(M). In our M3, (2.12) reduces with these 1-form to the following equations,
(De;R)(e1, 2)e1 = 2A(e;) R(ey, ex)es + A(er) R(ey, ex)es
+A(ez)R(ey, e1)es + A(ez)R(eq, e2)e;
(De,R)(e2,€3)e; = 2A(e;) R(eq, e3)eq + A(ez) R(ej, e3)eq
+A(e3)R(ez, e)er + A(e)R(ez, e3)e;
(De;R) (e, e3)e; = 2A(e;) R(ey, e3)e; + A(ey) R(ey, e3)e;
+A(e3)R(e1, e1)e; + A(e)R(eq, e3)e;
This implies that with respect to the 1-form under consideration the manifold is not semi-pseudo
symmetric.
Thus, we have the following theorem:
Theorem4.1: A (SPS),cannot be a 3-dimensional Lorentzian §-Kenmotsu manifold.
5. Lorentzian B-Kenmotsu(SPRS),,-manifold(n > 3):
In this section, we assume that a (SPRS),is a Lorentzian f-Kenmotsu manifold. From (2.9) and
(2.14), we have the following expression

(DxRic)(Y,§) = — (n— DB*AY)N(X) + A(§Ric(Y,X). (5.1)
From (3.2) and (5.1), we get
—(n—DRZAXINX) + ARic(Y,X) = —(n — 1)B?g(Dx§,Y) — Ric(Y, Dx§). (5.2)
Putting & for X in (5.2), we get

BAA(Y) — A(n()] = 0. (5.3)
Again putting {for Y in (5.3), we get

B?A(§) = 0. (5.4
From (5.3) and (5.4), we have

B?A(Y) = 0. (5.5
But 2 # 0. Hence from (5.5), we get

A(Y) =0,

which is inadmissible by the definition of (SPRS),,.
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Thus, we can state that the fallowing theorem:

Theorem 5.1: A (SPRS),,(n = 3) cannot be a Lorentzian -Kenmotsu manifold, provided 2 =+ 0.
6. Example:

Let us consider the 3-dimensional manifold M = {(x,v,z) eR3,z # 0}, where (x, v, z) are standard
co-ordinate in R3.

We choose the vector fields

a a
e, =e?2— e, =e e, =k—
1 2 3 9z

z9
ax’ oy’
which is linearly independently at each point of M.
Let g be the Riemannian metric defined by

Let nbe the 1-form which satisfies the relation

n(es) = -1
Let ¢ be the (1,1) tensor field defined by

per = —ey, dpe; = —e;, pe3 = 0.
Then, we have

$*U =U + n(U)ezand g(pU,¢ W) = g(U, W) +nU)nW),
for any U, Wey (M).
Thus for e3 = &, (¢, &, 1, g) defines an almost LP contact structure on y(M).
Now calculating, we have

ler, e2] =0, [ey, e3] = —key, [ey €3] = —ke,.
By the Koszul's formula, we get
D, e, = —kes, De,e; = 0, De ez = —key,
De,e; = 0, Dg,e; = —kes, D,, e3 = —ke,
D,e; = 0, De,e;, = 0, Dg,es =0.

From above it can be easily seen that (¢, &,7, g) is a Lorentzian f-Kenmotsu structure on M. Conse-
quently M3 (¢, &,7, g) is a Lorentzian f-Kenmotsu manifold with f = —k.
Using the above relation, we can easily calculate the curvature tensor as follows

R(es, e;)e; = _k2‘32; R(eq, ex)e; = kzep R(eqy,ex)ez = 0,
R(ez e3)e; =0, R(eyez)e; = _k293' R(e; e3)e; = _k232r
R(ej, e3)e; = _kze3; R(ei,e3)e; = 0,  R(eq,ez)e; = _kzep

R(ey,e1)e; = R(ey, e1)e; = R(ey,eq)ez = 0,
R(ey e2)e; = R(ey, e2)e; = R(ey, €2)e3 =0,
R(es, e3)e; = R(es, e3)e; = R(es, e3)ez = 0.
Form above expression of the curvature tensor, we obtain
Ric(X,Y) =33, g (R(X,e)e;Y) as
Ric(es,e;) =0, Ric(ey, ;) =0 Ric(es, e3) = —2k2.
Since{eq, €5, e3} form a basis of the Lorentzian f-Kenmotsu manifold any vector field Y, Z can be
written as
Y = aieq + biey + 165, Z = ayeq + byey + caen.
where a;, b;, c;eR* (the set of all positive real numbers), i = 1, 2, 3. This implies that
Ric(Y,Z) = =2 cyck?.
By above equation, we have
(De,Ric)(Y,Z) = DgRic (Y,Z) — Ric(D,,Y,Z) — Ric(Y,D,,Z)
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(D1Ric)(Y,Z2) = — 2k3(a,c; + azcq)
(De,Ric)(Y,Z) = — 2k3(bicy + bycy)
(De,Ric)(Y,Z) = 0.

Let us now consider

aic, + a,c3=0 &bycy + bycq = 0Oand A(e3) = 0. 6.1
at any point XeM.
From (2.14), We have

(De;Ric)(Y,Z) = A(Y)Ric(e;, Z) + A(Z)Ric(e;,Y). (6.2)

It can be easily shown that the manifold with (6.1) satisfies the relation (6.2).
Hence the manifold under consideration is not (SPRS),, Lorentzian -Kenmotsu maifold.
Thus we can state that the fallowing theorem:
Theorem 6.1: A (SPRS),, (n = 3) cannot be a 3-dimensional Lorentzian §-Kenmotsu manifold.
7. Application
A perfect flow on Riemannian manifold (Chaki and Barua,1999) is a triple ¢ = (&, p, o) where
(1) &is non null vector field call the flow vector.
(i1) p and o are scalar field such that p + o # 0.
If p + 0= 0, we may called (&, p, o )a trivial perfect flow and if p=0, it is called an incoherent flow.
A tensor field
TX,Y)= (p+on@n) - pgX,Y). (7.1
where g (X,§) =n(X) is called the energy-momentum tensor of the perfect flow (&,p,0) if
div(T) = 0.
LetG(X,Y) = Ric(X,Y) — g g(X,Y), be the Einstein tensor. Then we suppose
GX)Y) = kiT(X,Y), (7.2)
wherek;is constant.
Thus in view of (7.1) and (7.2), we find

Ric(X,Y) = 2 g(X,Y) = ks [(p + o)n(XIn(¥) — pg(X, V). (7.3)
Contraction of (7.3), we get

(32) .7 = kiltn+ Dp + o, (7.4)
Again putting ¢ for Xin (7.3) and using (2.1) and (2.9), we find

r=2[k;(2p + o) — (n — 1)B?]. (7.5)

because n(Y) cannot vanish.
By virtue of (7.4) and (7.5), we obtain
_ (n-1)(n-2)p*-k,0(n-3)

D T2 (n=5) (7.6)
From (7.3) and (7.6), we get
-1 2 _ (n-5)
o= [+ 1% - —r. (7.7)
From (7.6) and (7.7), we get
_1[_p2_ @3
p= kl[ B 2(n—1)r : (7.8)
Thus we have
p+0=k—11[nﬁz+ﬁ % 0. (1.9)

Thus, we can state that the fallowing theorem:
Theorem 5.1: In Lorentzian f-Kenmotsu manifold, the mass density and pressure density o and
pare given by (7.7) and (7.8) such that p + o # 0.
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