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Abstract 

In This paper, we introduced a new tensor named generalized concircular curvature tensor on a 

Riemannian manifold which generalized the concircular curvature tensor. First, we deduced some basic 

geometric properties of generalized concircular curvature tensor. Further, a symmetric investigation of 

generalized concircular curvature tensor has been made on the four-dimensional spacetime of general 

relativity. The spacetime fulfilling Einstein field equations with the vanishing of generalized concircular 

curvature tensor is being considered and the existence of killing and Conformal killing vectors on such 

spacetime have been established. At last, we extend the similar case for the investigation of cosmological 

models with dust and perfect fluid spacetime.   

Keywords and phrases:  Spacetime, quadratic killing tensor, quadratic Conformal Killing tensor, 

concircular curvature tensor, quasi-concircular curvature tensor, Q-curvature tensor, generalized 

concircular curvature tensor. 

1. Introduction 

The study spacetime of general and cosmology is regarded as a connected 4-dimensional semi-

Riemannian manifold (    ) with Lorentzian metric   with signature (       ). The geometry of 

Lorentz manifold begins with the study of causal character of vectors of the manifold. It is due to this 

causality that Lorentz manifold becomes a convenient choice for the study of general relativity. Indeed, 

by basing its study on Lorentzian manifold the general theorem of relativity opens the way to the study of 

global questions about it Beem and Ehrlicle (1981), Clarke (1986), Geroch (1971), Hawking and Ellis 

(1973), Joshi (1993), many others. In general relativity, the matter content of spacetime is described by 

the energy-momentum tens   which is to be determined from physical considerations dealing with the 

distribution of matter and energy. 

As we known that the symmetric spaces play an important role in differential geometry, the geometrical 

symmetries of the spacetimes are expressible  through vanishing of the Lie derivative of certain tensors 

with respect to a vector. These symmetries are also known as collineations were first introduced by Katzi  
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Livine and Devis (1969). Further studies of collineations by Z. Ahsan (1995 and 1996), M. Ali etal 

(2019), Pundeer (2020) among many others. The spacetime symmetries are used in the study of exact 

solutions of Einstein‟s field equations in general relativity. A killing vector field is one of the most 

important type or symmetries and defined to be a smooth vector field that preserves the metric tensor. We 

have all the tools needed to workout Einstein‟s field equation, which explains have to metric responds to 

energy and momentum. The Einstein‟s equation Neil (1983), imply that the energy momentum tensor is 

of vanishing divergence. This requirement satisfied if the energy momentum tensor is covariant constant 

Chaki and Roy (1996). In 1996, Chaki and Roy proved that a general relativistic spacetime with covariant 

constant energy-momentum tensor is Ricci symmetric, that is,          where     is the Ricci tensor 

of the spacetime. Several authors studied spacetmes in different way such as spacetimes with semi-

symmetric energy momentum tensor De and Velimirovic (2015), m-projectively semi-symmetric 

spacetimes by Zengin (2012). M-projectively semi-symmetric Lorentzian   Sasakian manifold by 

Prakasha etal, pseudo Z-symmetric spacetimes by Montica and Suh (2104), quasi-conformally, pseudo 

cohormonically symmetric spacetimes by Zengin, Tasci (2018), pseudo projectivelly spacetimes by 

Mallick, Suh and De (2016), pseudo-quasi-conformal curvature tensor and spacetimes of general 

relativity by Suh, Chavan, and Pundeer (2021), spacetime admitting generalized conhormonic curvature 

tensor (2022) and many others. In the general theorem of relativity, the matter content of the spacetime is 

described by the energy momentum tensor. The matter content is assumed to be a fluid having density and 

pressure and possessing dynamical and kinematical quantities like velocity, acceleration, vorticity, shear 

and expansion. In a perfect fluid space-time, the energy momentum tensor   of the type (0,2) is of the 

form Neill (1989) 

              (   )  (   ) ( ) ( )    (   ) ,                        (1.1) 

where   is the isotropic pressure,   is the energy density and   is a non-zero one form such that 

 (   )   ( )          where   is the velocity field such that  (   )     and   is mathematically 

equivalent to a unit space-like vector field. The field is called perfect because of the absence of heat 

condition tensors and stress terms corresponding to viscos‟s perfect-fluid  space-times in a language of 

differential geometry are called quasi-Einstein spaces De and Shenaury (2019). If the isotropic pressure   

vanishes in perfect fluid then it is said to be a dust fluid. In a dust fluid  space-time, the energy 

momentum tensor   of the type (0,2) is of the form Neill (1983)  

 (   )    ( ) ( ).                                  (1.2) 

The Einstein‟s field equation with cosmology to constant is given by Neill (1981)   

                 (   )  
 

 
 (   )    (   )    (   ) ,                        (1.3) 

where     and   denotes the Ricci tensor and scalar curvature respectively,   is the cosmological constant 

and    .  

The Einstein‟s field equation without cosmological constant is given by Neill (1993)   

                 (   )  
 

 
 (   )    (   ).                       (1.4) 

The Einstein‟s field equations (1.3) and (1.4) imply that the energy-momentum tensor is conservative. 

This requirement is satisfied if the energy-momentum tensor is covariant Chaki and Roy (1996). 

The geometrical symmetries of spacetime are expressed through the equation  
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         ,                                 (1.4a) 

where    represents a geometrical/physical quantity,    denotes the Lie derivative with respect to   and 

   is a scalar. One of the most simple and widely used example is the metric inheritance symmetric for 

which      in (1.4a); and for this case,   is killing vector field if    is zero. 

Definition 1: Let (    ) be a spacetime manifold with  Levi-Civita connection  . A quadratic killing 

tensor is a generalization of a Killing vector and is defined as a second order symmetric tensor   satisfies 

the condition: 

(   )(   )  (   )(   )  (   )(   )   .                             (1.4b) 

Definition 2: A quadratic Conformal Killing tensor is analogous generalization of a Conformal Killing 

vector and is defined as a second order symmetric tensor   satisfying the condition: 

(   )(   )  (   )(   )  (   )(   )   ( )(   )   ( )(   )  

  ( )(   ),                            (1.4c) 

for a smooth 1-form on (    ). 

In general relativity the matter content of the space-time is described by the energy-momentum tensor. 

The matter content is assumed to be field having density and pressure and possessing dynamical and 

kinematical quantities like velocity, acceleration, vorticity, shear and expansion. 

A transformation of a Riemannian manifold which transforms every geodesic circle of manifold into a 

geodesic circle is called a concircular transformation and the geometry which deals with such 

transformation is called the concircular geometry Yano (1940). A concircular transformation is always a 

conformal transformation Yano (1940). Hear concircular geodesic circle means a curve in manifold 

whose first curvature is constant and whose second curvature is identically zero. Yano and Kon (1984) 

defined the concircular curvature tensors as a (1,3) type tensor  (   )  that stays invariant under 

concircular transformation for an n-dimensional Riemannian manifold  

 (   )   (   )   
 

 (   )
, (   )   (   ) -.                       (1.5) 

Equation (1.5) can be written as of type  

  (       )    (       )   
 

 (   )
, (   ) (   )   (   ) (   )-,                 (1.6)  

where   is the scalar curvature tensor and  

  (       )   ( (   )   )  and      (       )   ( (   )   ).                        (1.7) 

In (2012), Prasad and Maurya, defined quasi-concircular curvature tensor by the expression: 

 ̃(   )     (   )   
 

 
.

 

   
   / , (   )   (   ) -,                  (1.8) 

                

where   and   are constants such that      .  Quasi-concircualr curvature tensor has been extended to 

LP-Sasakian manifold, P-Sasakian manifold and Lorentzian   Kenmotsu manifold by Narain et al. 

(2009), Kumar et al. (2009) and Ahmad et al. (2019) respectively. 
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Subsequently in 2013 Montica and Suh introduced a new curvature tensor of type (1,3) in an n-

dimensional Riemannian manifold (    ) (   ) denoted by    and defined by 

 (   )   (   )   
 

 (   )
, (   )   (   ) -,                       (1.9) 

where   is an arbitrary scalar function.  Such a tensor   is known as   curvature tensor. The notion of 

  tensor is also suitable to reinterpret some differential structures on a Riemannian manifold. 

Motivated by the above studies in the present paper we define generalized concircular curvature tensor   

of type (1,3) as follows: 

  (   )      (   )       (   )      (   ) ,                                      (1.10) 

where       and    are constants such that            .    

In particular, if  

(i)                    
 

 (   )
, then from (1.10) 

  (   )   (   )   
 

 (   )
, (   )   (   ) -   (   )   concircular 

(ii)                    
 

 
.

 

   
   /, then from (1.10) 

 (   )     (   )   
 

 
.

 

   
   / , (   )   (   ) -   ̃(   ) =Quasi-

concicular 

(iii)                    
 

 (   )
, then from (1.10) 

  (   )   (   )   
 

 (   )
, (   )   (   ) -   . 

Thus, we see that    ̃ and   tensors are particular case of the tensor  . For this reason curvature tensor 

  is called generalized concircular curvature tensor. If                   , then generalized 

concircular curvature tensor and curvature tensor are equivalent. We can express (1.10) as follows: 

   (       )       (       )       (   ) (   )      (   ) (   ),           (1.11) 

where    (     )   ( (   )   )  and      (     )   ( (   )   ). 

A symmetric (0,2) Ricci tensor     as a Riemannian manifold (    ) is said to be a Codazzi type  tensor 

if it satisfies the following equation:  

 (     )(   )  (     )(   ),                                 (1.12) 

for arbitrary vector fields     and  . 

The geometrical and topological consequences of the existence of a non-trival Codazzi tensor on a 

Riemannian manifold have been studied by Derdzinski and Shen (1983).   

The present paper is organized as follows: 

2. Some properties of generalized concircular curvature tensor     
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Let     and   denote the Ricci tensor of the type (0,2) and the scalar curvature respectively and    

denotes the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor 

   , that is, 

 (     )     (   ).                                (2.1) 

Let *  + be an orthonormal basis of the tangent space at each point of the manifold where      . In a 

Riemannian manifold the Ricci tensor     is defined by  

   (   )  ∑  ( (   
     )    ) and   ∑    ( 

        ) is the scalar curvature tensor.  

From (1.11), we have the following properties: 

( )     (       )   (       )  (     ), (   ) (   )   (   ) (   )-

(  )    (       )   (       )  (     ), (   ) (   )   (   ) (   )- 

(   )    (       )    (       )                                                                                       

  (  )    (       )   (       )   (       )   (     ) , (   ) (   )      

                                                                                              (   ) (   )   (   ) (   )-  }
 
 

 
 

               (2.2) 

Also, from (1.11), we have  

   
( )   (    

  )     (         )  (     ) (   )                               

(  )   (    
  )     (         )       (   )  (      ) (   ) 

        

   (   )   (    
  )     (         )        (   )  (      ) (   )       

  (  )      (         )       (   )  (     )(      ) (   )        

      

}
 
 

 
 

                           (2.3) 

where  (    
  ) (    

  ) and (    
  ) on the contraction with respect to     and   respectively. 

For generalized concircularly flat manifold, we get 

                 (   )     (   ).                      (2.4) 

where      .
      

  
/      . 

Again equation (2.5) gives 

                  .                      (2.5) 

In view of (2.2), (2.3), (2.4) and (2.5), we have 

Theorem 2.1:  A generalized concircular curvature on (    ) is  

(A) skew symmetric in first two slots if        , 

(B) skew symmetric in last two slots if        , 

(C) symmetric in pair of slots, 

(D) satisfies Bianchi‟s first identity if        . 

Theorem 2.2: A generalized concircularly flat manifold are 

(A) Einstein manifold, 

(B) Ricci symmetric provided     , 

(C) scalar curvature tensor is not zero, 
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(D) not a constant curvature. 

Further, taking covariant derivative of equation (1.10), we get 

             (   )(   )    (   )(   ) .                 (2.6) 

Equation (2.6) can be put as  

             (    )(       )    (    )(       ).                 (2.7) 

Contraction (2.6), we get 

             (    )(   )    (    )(   ) .                     (2.8) 

From (2.6), (2.7) and (2.8), we have the following theorem: 

Theorem 2.3 (i) A generalized concircular curvature on (    ) satisfies Bianchi‟s second identity. 

  (ii) For generalized concircular curvature tensor (    )(   )    and  (    )(   )  

  are equivalent if scalar curvature is constant provided     . 

 (iii) A generalized concircular curvature tensor is divergence free if and only if it is of 

Codazzi type tensor. 

3.  Spacetime with vanishing generalized concircular curvature tensor (    ) 

Here, we denote generalized concircularly spacetime by the notation (    ) . 

Theorem 3.1: For (    ) , the energy-momentum tensor satisfying the Einstein field equations with a 

cosmological constant is the form 

 
 

 
(    ) (   )   (   ). 

Proof: From (1.3), we get 

                 (   )  .  
 

 
/ (   )    (   ).                    (3.1) 

Here, we assume that our manifold (    ) , then from (2.4), (2.5) and (3.1). we get 

               (   )  
 

 
(    ) (   ).                    (3.2) 

Thus, from (3.2), the proof is completed. 

Theorem 3.2: For (    )  satisfying the Einstein field equations with a cosmological constant,   a 

killing vector field   if and only if the Lie derivative of the energy-momentum tensor along that vector 

field is zero.  

Proof: Taking Lie derivative of both sides of (3.2), we get 

                (   )(   )  (    )(   )(   ).                    (3.3) 

If   is killing vector field then, we have  

              (   )(   )   .                    (3.4) 

In view of (3.3) and (3.4), we get 
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             (   )(   )   ,     .                    (3.5) 

Conversely, if (3.5) holds, then from (3.3), we get 

              (   )(   )   ,  (    )   .   

Thus, we can state that   is killing vector field. The proof is completed. 

Theorem 3.3: (    )  obeying the Einstein field equations with a cosmological term,   a Conformal 

killing vector field   if and only if the energy-momentum tensor has the symmetry in heritance property. 

Proof: If   satisfies the condition  

               (   )(   )      (   ).                    (3.6) 

Then, it is called a Conformal killing vector field. Now, we assume that   is a Conformal killing vector 

field of (    ) . Thus from (3.3) and (3.6), we get   

               (   )(   )      (   ).                    (3.7) 

In this case, it can be said that the energy-momentum tensor has the symmetry in heritance property. 

Conversely, if (3.7) holds, then it follows that the equation (3.6) holds, i.e. the vector field   is a 

Conformal killing vector field. 

Theorem 3.4: The energy-momentum tensor of  (    )  satisfying the Einstein field equation with a 

cosmologically term is locally symmetric.  

Proof: Let us consider that our space is (    ) . If we take the covariant derivative of (3.2), then we 

find that 

                (   )(   )   .                    (3.8) 

Thus, we see that the energy-momentum tensor satisfies the equation (1.4b) is locally symmetric. In this 

case, the proof is completed. 

Theorem 3.5: (    )  cannot admit a quadratic Conformal killing energy-momentum tensor satisfying 

the Einstein field equation with a cosmologically constant.  

Proof: If put (3.8) in (1.4c), we get 

 ( )(   )   ( )(   )   ( )(   )   .                             (3.9) 

Contraction of (3.9) with respect to   and   leads to  

 ( )   .                                        (3.10) 

Thus, we can say that the energy-momentum tensor of this manifold cannot be a quadratic Conformal 

killing tensor. This result completes the proof. 

4. Perfect fluid spacetime with vanishing generalized concircular curvature tensor 

In this section we consider (    )  obeying Einstein‟s field equation with cosmological constant. 

Theorem 4.1: In (    )  satisfying the Einstein field with a cosmological term, the matter contains of 

the spacetime satisfy the vacuum-like equation of state. 
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Proof: For (    )  with the help of (1.1) and (3.2) the Einstein field equations are found as  

              (       ) (   )   (   ) ( ) ( ).                    (4.1) 

Contraction of (4.1) over   and  , we get  

                   
 

 
(    ).                    (4.2) 

Again if we put   for   and   in (4.1), we have 

                     .                    (4.3) 

Combining (4.2) and (4.3), we get 

                  .                    (4.4) 

The proof is completed. 

Theorem 4.2: The (    )  admitting a dust for a perfect fluid is field with radiation.  

Proof: If we assume a dust in a perfect fluid, we have  

                 .                    (4.5) 

From (4.4) and (4.5), we get 

                .                    (4.6) 

Thus, this leads the proof. 

5. Dust fluid spacetime with (    )  

In a dust or pressure less fluid spacetime, the energy momentum tensor is in the form 

                (   )    ( ) ( ),                    (5.1) 

where   is the energy density of dust-like matter and   os non-zero 1-form such that  (   )   ( ) for 

all     being the velocity vector field of the flow, that is, (   )    . 

Theorem 5.1: A relativistic (    )  satisfying the Einstein field equation with a cosmological terms is 

vacuum.  

Proof: In consequences of (3.2) and (5.1), we get 

               (    ) (   )     ( ) ( ).                   (5.2) 

Contraction of (5.2) over   and   gives   

                   
  

 
.                    (5.3) 

Again, if we put   for   and   in (5.2), we have 

                     .                    (5.4) 

Combining (4.3) and (4.4), we get  

                .                    (5.5) 

Hence, from (5.1) and (5.5), we get 
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                (   )   . 

This means that the spacetime is devoid of the matter. This result completes the proof. 

6. Cosmological models with vanishing generalized concircular curvature tensor 

In this section, we consider a perfect fluid spacetime with (    )  satisfying Einstein‟s field equation 

without cosmological constant. 

Theorem 6.1: A spacetime satisfying Einstein‟s field equation without cosmological constant and 

having vanishing generalized concircular curvature tensor represented a dust cosmological model, if the 

energy density does not vanishing. 

Proof: Now, making the use of equation (1.4), (2.4) and (5.1), we get 

               .   
 

 
/ (   )     ( ) ( ).                    (6.1) 

Putting    for   and   in (6.1), where    the orthonormal of the basis of the tangent space at each point of 

the manifold and taking summation over      , we get 

                     
  

 
.                    (6.2) 

Again if we put   for   and   in (6.1), we have 

                       .                    (6.3) 

From (6.2) and (6.3), we get  

                .  

This proof the theorem (6.1). 

Furthermore, for a spacetime with radiating perfect fluid the resulting universe be isotropic and 

homogeneous Ellis (1971). 

Making the use of (2.4) and (1.3), we get 

              .     
 

 
/ (   )     (   ).                    (6.4) 

In view of (1.1) and (6.4), we get 

              .     
 

 
   / (   )  (   ) ( ) ( ).                    (6.5) 

Now, using the condition of a spacetime with radiative perfect fluid i.e.      in equation (6.5) 

              .     
 

 
 

  

 
/ (   )  

 

 
   ( ) ( ).                    (6.6) 

Contraction   and   in (6.6), we get 

                 (    ).                    (6.7) 

Again put   for   and   in (6.6), we have 

                 (       ).                    (6.8) 

From (6.7) and (6.8), we get  
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                ,  

which is not possible by our assumption.  

Thus, we may state the following theorem: 

Theorem 6.2: A spacetime with vanishing generalized curvature tensor and satisfying Einstein‟s field 

equation with cosmological constant is an isotropic and homogeneous spacetime if energy density of the 

fluid does not vanish.  
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