

Quarter-symmetric non-metric connection in P-cosymplectic manifold

Niraj Kumar Gupta and *Bhagwat Prasad Department of Mathematics, DDU Govt. Degree College, Saidpur, Ghazipur *Department of Mathematics, S. M. M. Town P.G. College, Ballia-277001

Email - niraj.gdc@gmail.com

Abstract

The object of the present paper is to study P-cosymlectic manifolds with respect to the quarter-symmetric metric connection.

1. Introduction

Let (M, g) be an n-dimensional connected semi-Riemannian manifold of class C^{∞} and D be its Levi-Civita connection. The Riemannian-Christoffel curvature tensor R, the projective curvature tensor J, the concircular curvature tensor V, the conharmonic curvature tensor H and the conformal curvature tensor C of (M, g) are defined by Yano and Kon (1984)

$$R(X, Y) Z = D_X D_Y Z - D_Y D_X Z - D_{[X, Y]} Z,$$
(1.1)

$$J(X, Y) Z = R(X, Y) Z - \frac{1}{n-1} (Ric(Y, Z) X - Ric(X, Z) Y),$$
(1.2)

$$J(X, Y) Z = R(X, Y) Z - \frac{1}{n-1} (Ric (Y, Z) X - Ric(X, Z) Y),$$

$$V(X, Y) Z = R(X, Y) Z - \frac{r}{n(n-1)} [g(Y, Z) X - g(X, Z) Y],$$
(1.2)

$$H(X, Y,) Z = R(X, Y) Z - \frac{1}{n-1} [Ric (Y, Z) X - Ric (X, Z) Y + g(Y, Z) \phi X - (X, Z) \phi Y,$$
(1.4)

$$+ g(Y, Z) \phi X - (X, Z)\phi Y,$$

$$C(X, Y) Z = R(X, Y) Z - \frac{1}{n-1} [Ric(Y, Z) X - Ric(X, Z) Y + g(Y, Z) \phi X - g(X, Z) \phi Y] + \frac{r}{(n-1)(n-2)} [g(Y, Z) X - g(X, Z) Y],$$
(1.4)

respectively, where r is the scalar curvature, Ric is the Ricci tensor and Q is the Ricci operator such that Ric(X, Y) = g(QX, Y).

Let M and C^{∞} semi-Riemannian manifold. A (1.3) tensor field R on M is said to curvature-like tensor, if it has all the formal properties of curvature operator. That is, it satisfies the following properties Maltz (1972):

$$'R(X, Y, Z, W) + 'R(X, Y, W, Z) = 0,$$
 $'R(X, Y, Z, W) + 'R(Y, X, W, Z) = 0,$
 $'R(X, Y, Z, W) + 'R(Z, W, Y, X) = 0,$
 $'R(X, Y, Z, W) + 'R(Y, Z, X, W) + 'R(Z, X, Y, W) = 0,$
(1.6)

where

$$g(R(X, Y) Z, W) = 'R(X, Y, Z, W).$$

A linear connection \overline{D} defined on (M, g) is said to be a quarter-symmetric connection Golab (1975) of its torsion tensor \overline{T} of \overline{D}

$$\overline{T}(X, Y) = \overline{D}_X Y - \overline{D}_Y X - [X, Y],$$

satisfies

$$\overline{T}(X, Y) = \eta(Y) \phi X - \eta(X) \phi Y, \tag{1.7}$$

where η is a 1-form and ϕ is a (1,1)-tensor field. Moreover, if a quarter-symmetric connection \overline{D} satisfies the condition

$$(\overline{D}_X g)(Y, Z) = 0, \tag{1.8}$$

where $X, Y, Z \in \chi(M)$ and $\chi(M)$ is the set of all differentiable vector fields on M, then \overline{D} is said to be a quarter symmetric metric connection. If we change ϕX by X, then the connection is known as semi-symmetric metric connection Friedmann and Schoutern (1924). Thus the notion of quarter-symmetric generalizes the nation of semi-symmetric connection. A quarter-symmetric metric connection have studied by many geometers in several ways to a different extent such as Ahamd, Jun and Haseeb (2009), Berman (2015), De, Mandol and Mandal (2016), Haseeb (2015), Prasad and Haseeb (2016) and many others.

A relation between the quarter-symmetric metric connection \overline{D} and the Lievi-Civita connection D in a P-cosymplectic manifold is given by Haseeb and Prasad (2021)

$$\overline{D}_X Y = D_X Y + \eta(Y) \phi X - g(\phi X, \xi). \tag{1.9}$$

The paper is organized as follows: After introduction in section 2, we give a brief account of P-cosymplectic manifolds. In section 3, we establish the relation between curvature tensors and Ricci tensor of the Riemannian connection D and the quarter-symmetric metric connection \overline{D} in a P-cosymplectic manifold. In section 4, 5, 6 and 7 we studied ξ -projectively flat, ξ -concircularly flat, ξ -conharmonically flat and ξ -conformaly flat P-cosymplectic manifold with respect to quarter-symmetric metric connection \overline{D} respectively.

2. Preliminaries

Let M be an η -dimensional differentiable manifold on which there are defined a tensor field ϕ of a type (1.1), a 1- form η and a vector field ξ satisfying

$$\phi^2 X = X - \eta(X) \xi \text{ and } \eta(\xi) = 1,$$
 (2.1)

Also
$$\phi(\xi) = 0$$
 and $\eta(\phi X) = 0$. (2.2)

Than (M, n) is called an almost para-contact manifold Sato (1976).

Let g be the Riemannian metric satisfying

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y), \tag{2.3}$$

and

$$g(X, \xi) = \eta(X), \tag{2.4}$$

then the structure (ϕ, ξ, η, g) satisfying (2.1), (2.2), (2.3) and (2.4) is called an almost contact para-contact metric manifold Sato (1976). If we define $F(X, Y) = g(\phi X, Y)$, then the following relations exist:

$$F(X, Y) = F(Y, X),$$
 (2.5)

and

$$F(\phi X, \phi Y) = g(\phi^2 X, \phi Y) = g(X, \phi Y) = g(\phi X, Y) = F(X, Y).$$
 (2.6)

An almost contact para-contact manifold (P-contact manifold) is called P-cosymlectic manifold if

$$D_X \phi = 0 \Leftrightarrow (D_X F) (Y, Z) = 0. \tag{2.7}$$

On this manifold, we have

$$(D_X \eta)(Y) = 0 \text{ and } (D_X \xi) = 0.$$
 (2.8)

Definition (2.1): A P-cosymplectic manifold M is said to be an η -Einstein manifold if its Ricci tensor Ric is of the form Blair (1976)

$$Ric (X, Y) = a g(X, Y) + b\eta(X)\eta(Y),$$

where a and b are scalar functions on M.

A P-cosymplectic manifold M is said to be a generalized η -Einstein manifold if its Ricci tensor Ric is of the form Haseeb and Prasad (2018)

Ric
$$(X, Y) = a g(X, Y) + b \eta(X) \eta(Y) + c F(X, Y),$$

where a, b, c are scalar functions on M and $F(X, Y) = g(\phi X, Y)$. If c = 0 then the manifold reduces to be an η -Einstein manifold.

3. Curvature tensor of P-cosymplectic manifold with respect to the quarter-symmetric metric connection $\overline{\mathbf{D}}$

The curvature tensor \overline{R} of a P-cosymplectic manifolds with respect to the quarter-symmetric metric connection \overline{D} is given by.

$$\overline{R}(X, Y) Z = \overline{D}_X \overline{D}_Y Z - \overline{D}_Y \overline{D}_X Z - \overline{D}_{[X, Y]} Z. \tag{3.1}$$

From equations (1.1), (1.9) and (3.1), we get

Form (2.1), (2.8) and (3.2), we get

$$\overline{R}(X, Y) Z = R(X, Y) + g(\phi X, Z) \phi Y - g(\phi Y, Z) \phi X.$$
(3.3)

Taking the inner product of (3.3), we get

$$\overline{R}(X, Y, Z, W) = '\overline{R}(X, Y, Z, W) + g(\phi X, Z) g(\phi Y, W) - g(\phi Y, Z) g(\phi X, W), (3.4)$$
 where $'\overline{R}(X, Y, Z, W) = g(\overline{R}(X, Y) Z, W)$ and $'R(X, Y, Z, W) = g(R(X, Y) Z, W)$. contracting (3.3) over X and W, we get

$$\overline{Ric}(Y, Z) = Ric(Y, Z) + g(Y, Z) - \eta(Y) \eta(Z) - g(\phi Y, Z)\psi. \tag{3.5}$$

where Ric and \overline{R} ic are the Ricci tensors with respect to the connection D and \overline{D} respectively on M and ψ = trace ϕ .

From (3.5), we get

and

$$\phi Y = QY + Y - \eta(Y)\xi - \phi Y. \psi. \tag{3.6}$$

where Q and \overline{Q} are the Ricci operators with the respect to the connection D and \overline{D} , respectively on M, contracting (3.5), we get

$$\bar{\mathbf{r}} = \mathbf{r} + (\mathbf{n} - 1) - \psi^2$$
. (3.7)

where r and \bar{r} are the scalar curvatures with respect to the connection D and \bar{D} . respectively on M.

in view of (1.6) and (3.6), we get

$$\begin{array}{l}
'\overline{R}(X, Y, Z, W) + '\overline{R}(Y, X, Z, W) = 0, \\
'\overline{R}(X, Y, Z, W) + '\overline{R}(X, Y, W, Z) = 0, \\
'\overline{R}(X, Y, Z, W) - '\overline{R}(Z, W, X, Y) = 0, \\
'\overline{R}(X, Y, Z, W) + '\overline{R}(Y, Z, X, W) + '\overline{R}(Z, X, Y, W) = 0.
\end{array}$$
(3.8)

Thus in view of equation (3.8), we can state the following theorem:

Theorem (3.1): The curvature tensor of type (0, 4) of a P-cosymplectic manifold with respect to quarter-symmetric metric connection is curvature like tensor.

Form (3.5) we can state the following theorem:

Theorem (3.2): (i) If the Ricci tensor of P-cosymplectic manifold with respect to quarter-symmetric metric connection vanishes then the Ricci tensor of the manifold with respect to Levi-Civita connection reduces in generalized η -Einstein manifold,

- (ii) Ricci tensor \overline{R} ic (Y, Z) is symmetric,
- (iii) Ricci tensor \overline{R} ic (Y, Z) is skew-symmetric if and only if Ricci tensor Ric(Y, Z) of Levi-Civita connection given by the expression

$$Ric(Y, Z) = \eta(Y) \eta(Z) + g(Y, Z) - g(\phi Y, Z) \psi.$$

4. ξ-projectively flat P-cosymplectic manifolds with respect quarter-symmetric metric connection

Definition (4.1): A P-cosymplectic manifold M with respect to the quarter-symmetric metric connection is said to be –protectively flat if

$$\bar{J}(X, Y)\xi = 0, \tag{4.1}$$

for all vector fields X, Y $\in \chi(M)$, $\chi(M)$ is the set of all differentiable vector fields an M. In view of (1.2), (3.3), (3.5) we get

$$\bar{J}(X, Y) Z = J(X, Y) Z - g(\phi Y, Z) \phi X + g(\phi X, Z) \phi Y - \frac{\psi}{n-1} [g(\phi X, Z) Y - g(\phi Y, Z) X] - \frac{1}{n-1} [g(Y, Z) X - \eta(Y) \eta(Z) X - g(X, Z) Y + \eta(X) \eta(Z) Y].$$
(4.2)

Putting ξ for Z in (4.2) and using (2.1) and (2.2), we get

$$\bar{J}(X, Y)\xi = J(X, Y)\xi. \tag{4.3}$$

In view of (4.3), we have the following theorem:

Theorem (4.1): An n-dimensional P-cosymplectic manifold with respect to the quarter-symmetric metric connection is ξ -protectively flat if and only if the manifold with respect to the Levi-Civita connection is also ξ -protectively flat.

5. ξ -concircularly flat P-cosymplectic manifolds with respect to the quarter-symmetric metric connection

Definition (5.1): A P-cosymplectic manifold M with respect to the quarter-symmetric metric connection is said to be ξ -concircularly flat if

$$\overline{V}(X, Y)\xi = 0, \tag{5.1}$$

for all vector fileds X, Y $\in \chi(M)$, $\chi(M)$ is the set of all differentiable vector fields on M. In view of (1.3), (3.3), (3.5) and (3.7), we get

$$\overline{V}(X, Y) Z = V(X, Y) Z - g(\phi Y, Z) \phi X + g(\phi X, Z) \phi Y - \frac{(n-1)-\psi^2}{n(n-1)} [g(Y, Z) X - g(X, Z) Y].$$
(5.2)

Putting ξ for Z in (5.2) and using (2.1) and (2.2), we get

$$\overline{V}(X, Y)\xi = V(X, Y) \xi - \frac{(n-1) - \psi^2}{n(n-1)} [\eta(Y) X - \eta(X) Y].$$
 (5.3)

In view of (5.3), we van state the following theorem:

Theorem (5.1) : A n-dimensional P-cosymplectic manifold with respect to the quarter-symmetric metric connection is ξ -concircularly flat if and only if the manifold with respect to the Levi-Civita connection is also ξ -concircularly flat, provided $\psi^2 = (n-1)$.

6. ξ-conharmanically flat P-cosymplectic manifold with respect to quartersymmetric metric connection

Definition (6.1) A P-cosymplectic manifold M with respect to the quarter-symmetric metric connection is said to be ξ -conharmonically flat if

$$\overline{H}(X, Y)\xi = 0 \tag{6.1}$$

for all vector fields X, Y $\in \chi(M)$ is the set of all differentiable vector fields on M. In view of (1.4), (3.3), (3.5) and (3.6), we get

$$\begin{split} \overline{H}(X,Y) & Z = H(X,Y) Z - g(\phi Y,Z) \phi X + g(\phi X,Z) \phi Y - \\ & \frac{\psi}{n-2} \left[g(\phi X,Z) \phi Y - g(\phi Y,Z) X + g(Y,Z) \phi X \right. \\ & \left. - g(X,Z) \phi Y \right] - \frac{1}{n-2} \left[2g(Y,Z) X - 2g(X,Z) Y \right. \\ & \left. - \eta(Y) \eta(Z) X + \eta(X) \eta(Z) Y - \eta(X) g(Y,Z) \xi \right. \\ & \left. + g(X,Z) \eta(Y) \xi \right]. \end{split} \tag{6.2}$$

Putting ξ for Z in (6.2) and using (2.1) and (2.2), we get

$$\overline{H}(X, Y)\xi = H(X, Y) \xi - \frac{\psi}{n-2} [\eta(Y) \phi X - \eta(X) \phi Y] - \frac{1}{n-2} [\eta(Y) X - \eta(X) Y]. \quad (6.3)$$

In view of (6.3), we can write the following theorem:

Theorem (6.1): A n-dimensional P-cosymplectic manifold with respect to quarter-symmetric metric connection is ξ -conharmonically flat if and only if the manifold with respect to the Levi-Civita connection is also ξ -conharmonically flat, provided X and Y orthogonal to ξ .

7. ξ-Conformally flat P-cosymplectic manifold with respect to quarter-symmetric metric connection:

Definition (7.1): A P-cosymplectic manifold M with respect to the quarter0symmetric metric connection is said to be ξ–conformally flat of

$$\overline{C}(X, Y)\xi = 0, \tag{7.1}$$

for all vector fields X and Y $\in \chi(M)$ is the set of all differentiable vector fields on manifold.

In view of (1.5),(3.3), (3.5), (3.6) and (3.7), we get

$$\begin{split} \overline{C}(X,\,Y)\,Z &= C(X,\,Y)\,Z - g(\phi Y,\,Z)\,\phi X + g(\phi X,\,Z)\,\phi Y - \\ &\frac{\psi}{n-2}[g(\phi X,\,Z)\,\,Y - g(\phi Y,\,Z)\,\,X + g(Y,\,Z)\,\phi X \\ &- g(X,\,Z)\,\phi Y] - \frac{1}{n-2}[2g(Y,\,Z)\,\,X - 2g(X,\,Z)\,\,Y \\ &- \eta(Y)\,\,\eta(Z)\,\,X + \eta(X)\,\,\eta(Z)\,\,Y - \eta(X)\,\,g(Y,\,Z)\xi \\ &+ g(X,\,Z)\,\,\eta(Y)\xi] + \frac{(n-1)-\psi^2}{(n-1)(n-2)}[g(Y,\,Z) - g(X,\,Z)\,\,Y]. \end{split} \label{eq:continuous} \tag{7.2}$$

Putting ξ for Z in (7.2) and using (2.1) and (2.2), we get

$$\overline{C}(X, Y)\xi = C(X, Y)\xi - \frac{\psi}{n-2}[\eta(Y) \phi X - \eta(X) \phi Y] - \frac{\psi^2}{(n \ 0 \ 1)(n-2)}[\eta(Y) \ X - \eta(X) \ Y].$$
(7.3)

In view of (7.3), we can state the following theorem:

Theorem (7.1): A n-dimensional P-cosymplectic manifold with respect to quarter-symmetric metric connection is ξ -conformally flat if and only if the manifold with respect to the Levi-Civita connection is also ξ -conformally flat, provided ψ = 0.

References

- 1. Ahmad, M., Jun, J. B. and Haseeb, A. (2009). Hypersurfaces of an almost r-Para contact Riemannian manifold endowed with a quarter-symmetric metric connection, Bull. Korean Math. Soc., 46:477-487.
- 2. Berman, A. (2015). Weakly symmetric and Weakly Ricci-symmetric is Sasakian manifolds admitting a quarter-symmetric metric connection Novi. Sod. J. Math. 45:143-153.
- 3. De, U. C., Mandal, D. and Mandal, K. (2016). Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection, Bull. Trans. Unir. Brasov, 9(1): 39-52.
- 4. Friendmann, A. and Schoutern J.A. (1924). Uber die Geometric der halbsymmetrischen Ubertrogung, Math. Z., 21:211-223.
- 5. Golab, S. (1975). On semi-symmetric and quarter-symmetric linear connections, Tensor N.S., 29:249-254.
- 6. Haseeb, A. (2015). Some new results on Para-Sasakian manifolds with a quarter-symmetric metric connection, Facta Universitatis (NIS), Ser. Math. Inform 30:765-776.
- 7. Haseeb, A. ans Prasad, R. (2018). On concircular curvature tensor in Lorentzian α-Sasakian manifold with respect to the quarter-symmetric non-metric connection, Acta Et. Comm. Univ. Tart. De. Mathematics, 22(2): 279-292.
- 8. Haseeb, A. and Prasad, R. (2021). Certain results on Lorentzian Para-Kenmotsu manifolds, Bol. Soc. Paran. Mst., 39(3): 201-220.
- 9. MoltZ, R. (1972). The nullity spaces of curvature-like tensors, Diff. Geo. 7:579-523.
- 10. Prasad, R. and Haseeb, A. (2016). On a LP-Sasakian manifolds with respect to the quarter-symmetric metric connection, Novi Sad J. Math., 46:103-116.
- 11. Sato, I. (1976). On a structure similar to almost contact structure I Tensor, N.S., 30(2): 219-224.
- 12. Yano, K. and Kon, M. (1984). Structures on Manifolds, Seriesin Pure Mata., World Scientific, Vol. 3.

Received on 14.8.2020 and accepted on 29.10.2020