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Abstract  
 

Our main aim is to analyse geometric application for non-commutative Poission structure on Manifold. 
There exists a relationship between Poisson geometry and deformation theory which was initiated by 
Ezra Getzler. We derive properties of deformation quantization of a noncommutative Poisson structure 
with objective to compute infinitesimal deformation on Poisson manifold. J. Block and Ping Xu 
introduced the notion of non-commutative Poisson structure on an associative algebra. The main focus 
here is to reformulate its impact on symplectic reflection algebra. It is closely related to Horchs-child 
algebra based on computations of Gerstenhaber bracket. M. Gertenheber established its connection with 
the deformation theory of an associative algebra A as well as the Hochschild cohomology. A. 
Gerstenhaber studied deformation theory on a topological algebra where Gerstenhaber bracket is used in 
defining non-commutative Poisson structures compatible with differential forms on Hochs child 
cohomology X. Tang introduced the notion of Lie bracket on the Hochs child cohomology. We show the 
set of noncommutative Poisson structures on an algebra A has one to one correspondence with the set of 
infinitesimal deformations of A. We integrate the infinitesimal deformation associated to a 
noncommutative Poisson structure to a real one which is closely related to the notion of deformation 
quantization in mathematical physics.  
 

Keywords- Poisson geometry, Clifford algebra, non-commutative geometry, invarieant simplistic 
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1. Introduction  

Let us consider that A is a algebra of smooth functions on a smooth manifold M. An application of the 
Hochschild-Kostant-Rosenberg theorem, the second Hochschild cohomology classes in HH2 (A; A) are in 
one to one correspondence with Poisson structures on M. (ii) we extend the relationship between Poisson 
geometry and deformation theory. we discuss here the characteristic properties of non-commutative 
Poisson structures on orbifolds obtained from global quotients. Let M be a compact smooth manifold, and 
G be a finite group acting on M. The orbifold is the quotient space X = M/G, where X is a topological 
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space with quotient singularities. The algebra C(M)G of G-invariant smooth functions on M is not 
regular. The basic notions of non-commutative geometry has been introduced by A. Connes to derive 

algebraic properties of the crossed product algebra C(M) ⋊ G. We develop a geometric descriptions for 

all noncommutative Poisson structures which are symplectic C(M) ⋊ G when M is a symplectic 

manifold with a symplectic action. Noncommutative Poisson structures on C(M)⋊G, computed the 

Hochschild cohomology of C(M) ⋊ G as a vector space. 

1.2 Theorem  

A noncommutative Poisson structure on an associative algebra A is an element  in the second Hochschild 

cohomology group H2(A,A) of A, whose Gerstenhaber bracket with itself vanishes, i.e. [,]G = 0. 

…         (1) 

Proof  

Let Mg be the fixed point manifold of g, and Ng be the normal bundle of the embedding of Mg in M, where 
l(g) is the dimension of Ng. The group G acts on disjoint union ⊔Mg of Mg for all g ∈ G by the conjugate 
action where, Mg has different components with different dimensions. We choose the disjoint union of all 
the components and l(g) to be a local constant function on Mg. C(M)⋊G which is considered as a 
bornological algebra with the bornology defined by the Frechet topology. Let us take HH• to be the 
continuous Hochschild cohomology of a bornological algebra. It implies that the Hochschild cohomology 
of C(M) ⋊ G is equal to the space of “vector fields” on  . we derive characteristic properties of 

noncommutative Poisson structures on C(M)⋊G for which we compute the Gerstenhaber bracket on 
HH•(C(M) ⋊ G; C(M) ⋊ G). It possesses quasi-isomorphisms between the Hochschild cochain 
complexes defined as follows.  

          …(2) 

and 

         …(3) 

A quasi-isomorphism L is defined as follows.  

   …(4) 

The Gerstenhaber brackets on HH•(C(M) ⋊ G;C(M) ⋊ G) is determined from (3) & (4). we show that 
the Gerstenhaber bracket on orbifolds is a generalization of the classical Schouten-Nijenhuis bracket on 

manifolds. This bracket is the twisted Schouten-Nijenhuis bracket on (⊕g∧•−l(g) TMg⊗∧l(g)Ng)G. We 

solve the equation [,]G = 0 on HH2(C(M) ⋊ G;C(M) ⋊ G) expresses as noncommutative Poisson 

structures on C(M) ⋊ G when M is a symplectic manifold.  
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Let us consider a complex symplectic vector space V with a symplectic G action. The cocycles are used 
on symplectic reflection algebras which correspond to a special class of noncommutative Poisson 
structures on Poly (V) ⋊ G, where Poly(V) is the algebra of polynomials on V, we prove that all these 
cocycles can be extended to a formal deformation of the algebra Poly(V) ⋊ G. which implies that 
noncommutative Poisson structures may be extended to formal deformations, and it generalizes the 
symplectic reflection algebras.  

Properties of Poission structure and its algebraic interpretation  

Let Poly(V) be the algebra of polynomial functions on a vector space V, and G be a finite group acting 
linearly on V. The Hochschild cohomology of the crossed product algebra Poly(V)⋊G. The step 
construction of a quasi-isomorphism is given by 

 
constructed implicitly by N. Neunaler explicitly in the following steps.  

Step I: Let us choose map 

 

where G acts on C•(Poly(V), Poly(V) ⋊ G) by the relation  

     …   (5) 

Ug denotes the element g  Poly(V )⋊G. Given a Hochschild cocycle  ∈ Ck(Poly(V) ⋊ G, Poly(V) ⋊ 
G), Let us define L1() ∈ (Ck(Poly(V), Poly(V) ⋊ G) )G as follows  

   …   (6) 

where |G| is the order of group G. 

Step II: (isomorphism) 

   …  (7) 

Let Ag be a vector space isomorphic to Poly(V) equipped with the Poly(V)- bimodule structure given by 
the relation  

     …   (8) 

where the right hand side of is the product of a, ξ, and g(b) are elements in Poly(V). Since Poly(V)-
Poly(V) bimodule, Poly(V)⋊G has a natural splitting into a direct sum of submodules ⊕g2GAg, The 



 
Journal of Progressive science, vol.5, no.1, 2014 

 

4 
 

cochain complex C•(Poly(V), Poly(V)⋊ G) has a natural splitting into ⊕g2GC•(Poly(V),Ag). Let us define 
L2 to be the sum of the maps 

      …    (9) 
over all g ∈ G. 

We introduce the vector field  , on V where the xi are coordinate functions on V  and the 

vector field κg ∈ (TV) by the equation  

         …  (10) 

which shows that for a permutation σ of k elements fixing x ∈ V, the product (xi1
σ(1)−xi1) ・ ・ ・ (xik

σ(k) 

−xik ) is a function on x1, ・ ・ ・ , xk ∈ V. Now by taking the product of the values of the coordinate 

functions, given an element  ∈ Ck(Poly(V),Ag), Lg
2() ∈ (∧kT V), the usual projection to anti-

symmetric linear operators, by 

 
where Sk is the permutation group of k-elements. The G action on ⊕g2  

(∧•T V), κg ∧ ) is defined by 
the relation  

   …  (11) 

It is always verifiable that Lg
2 is G-equivariant, and it defines a map given by 

 

Step III (Irreducible representations) 

 

Let Cg be the cyclic group generated by g, which has a natural action on V. As Cg is abelian, V is 
decomposed into a direct sum of Cg irreducible representations. Let Vg be the subspace of all trivial Cg-
representations in V, and Ng be the sum of all nontrivial irreducible Cg representations in V. Therefore, V 
may be expressed as V g ⊕ Ng. Let us define L3 to be the sum of Lg

3, which is given by the relation  

         …  (12) 

where X|Vg is the restriction of X ∈ ∧•T V to ∧•T V |Vg , and prg projects ∧•T V |Vg to ∧•−l(g)T Vg ⊗ ∧l(g)Ng. 

The space ⊕gG ((∧•−l(g)TVg ⊗ ∧l(g)Ng, 0) is closed under G action on (⊕gG 1(∧•TV), κg ∧) and 
therefore inherits a G action. Similarly, under the computations it is also verifiable that Lg

3 is G-
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equivariant and L3 defines a map on the G-invariant components. Hence, we obtain that L = L3 ◦ L2 ◦ L1 is 
a quasi-isomorphism of cochain complexes 

    …(13) 

We now discuss its impact for generalization of computation of Hochschild cohomology of Poly(V ) ⋊ G 
using the quasi-isomorphism L. The main thrust is on obtain the process to generalize this construction to 

C(M) ⋊ G by defining L to be the given equation  

   …(14) 
We observe that the map L1 is a quasi-isomorphismfrom C•(A⋊G,A⋊G) to (C•(A,A ⋊ G))G for any 

algebra A with a finite group action. Therefore, the map L1 extends to the general case C(M) ⋊ G. 

   …(15) 
Secondly, L3 is generalized to the manifold case, as the map is written as follows.  

 

which is obtained by composing the projection map ∧•TM|M
g → ∧•−l(g)TMg ⊗ ∧l(g)Ng with the restriction 

map from ∧•TM to ∧•TM|V. Thirdly, to generalize L2, Connes’ map is taken from the Koszul resolution of 

C(M) to its Bar resolution for a manifold with an affine structure. Here Lg
2 is defined from the 

Hochschild cochain complex C•(C(M),C(M)g) to ∧•TM in a similar way. The Connes construction only 
works for affine manifolds. Therefore, for a general manifold M, the Hochschild cochain complex of 

C(M) ⋊ G is taken as a (pre)sheaf over the orbifold M/G, and use Cech techniques to compute the sheaf 
cohomology of this (pre)sheaf. L is a quasi-isomorphism of (pre)sheaves which is locally defined as the 
Lg.  

   …(16) 

But g is in the g-centralizer subgroup of G, the g-fixed point component’s contribution to HH•(C(M) ⋊ 

G,C(M) ⋊ G) has to be from g-invariant sections of (∧•−l(g)TVg ⊗ ∧l(g)Ng). As g acts on TVg, a g-
invariant section of ∧•−l(g)TVg ⊗ ∧l(g)Ng must have g-invariant component in ∧l(g)Ng. we thus find that 
∧l(g)Ng is a line bundle over Vg. To have a nonzero g-invariant section, it is required that the g action on 
∧l(g)Ng must be trivial. This implies that det (g|Ng ) = 1. We further observe that g|Ng ’s action on Ng is of 
finite order. It can be diagonalized. If Ng is of odd dimension, then by the fact that det (g|Ng ) = 1, we 
conclude that g|Ng has at least one eigenvalue equal to 1. This contradicts to the assumption of Ng. 

Therefore, if dim(Ng) is odd, there is no nonzero contribution to HH•(C(M) ⋊ G,C(M) ⋊ G) from this 
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g-fixed point component. Hence, the Hochschild cohomology of C(M)⋊G has no contribution from g-
fixed point submanifolds with odd l(g). Therefore, we conclude that  

  …(17) 

The quasi-isomorphism 

  …(18) 
which is a quasi-inverse to the map L, we construct a twisted cocycle g for each element g associated to 
the determinant line bundle ∧l(g)Ng; (ii), the twisted cocycles is taken to construct the map T. Our main 
focus is to discuss the local case Poly(V )⋊G, and derive method to generalize the construction to general 
manifolds. 

1.3 Theorem  

Let C(g) be the centralizer subgroup of g, which acts on Ng. If C(g) action on Ng is diagonalizable2, there 
is a natural construction of Ωg such that 

 

Proof 
As C (g) action on Ng is diagonalizable and g commutes with elements in C(g), g and C(g) action on Ng 

are diagonalized simultaneously. Therefore, a set of coordinates y1, ・ ・ ・ , yl(g) on Ng, may be derived 

which are eigen functions of g and C(g) action. Let us define Ωg using the coordinates yi. In particular, i 

= giyi, and h( i) = h(giyi) = gihiyi, where gi and hi are eigenvalues of Ωg and h action on yi. we combining 

here expressions of h(Ωg), we obtain the equation 

       …(19) 

Let us consider two special cases where the conditions assumed in theorem (1.2) are satisfied,  

(i) Group G is abelian; 

(ii) The codimension l(g) is 1 or 2. C(g) acts on Ng by isometry. When l(g) = 1, 2, isometry group of Ng is 
abelian. 

The cohomology HH•(A, Ae) is computed are given by 

 

Where  HH1(A, Ae) is generated by Ωe. 
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1.4 Theorem  

Given ξ ∈ Γ∞(⊕g ∧
k−l(g) T VgP ⊗ ∧l(g)Ng)G, we write ξ = ΣgXg ⊗ ∧g, where ⋀g is defined. The composition 

map L2 ◦ T1 satisfies the following equation  

 
Proof 

It is given that L2 is G equivariant and ξ is G invariant. Let us compute L2(T1(ξ))(x) as follows: 
L2(T1(ξ))(x) = 

 

 

 

 

 

 

          …(20) 

It shows ∧g and Ωg have the same values on linear functions.  Let us define T = T2 ◦ T1, and derive the 
following theorem. 

1.5 Theorem 
The map T is a quasi-isomorphism. In particular, L ◦ T = id. 
 

Proof 
We find that L1(T2) = id on C•(A;A ⋊ G)G, and therefore have 

 

which is equal to ξ by  

Given ξ ∈ Γ∞(⊕g ∧
k−l(g) T VgP ⊗ ∧l(g)Ng)G, we write ξ = ΣgXg ⊗ ∧g, where ⋀g is defined. The composition 

map L2 ◦ T1 satisfies the following equation  
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1.6 Lemma 
For α, β ∈ G, the condition Vα+Vβ = V is equivalent to the equality that l(α) + l(β) = l(αβ). And when Vα 
+ Vβ = V , Vα ∩ Vβ = Vαβ. 

Proof 
As dim(Vα) + dim(Vβ) = dim(Vα + Vβ) + dim(Vα ∩ Vβ),  

we have that l(α) + l(β) =dim(V ) − dim(Vα) + dim(V ) − dim(Vβ) 

=dim(V ) − dim(Vα + Vβ) + dim(V ) − dim(Vα ∩ Vβ) 

≥dim(V ) − dim(Vα + Vβ) + dim(V ) − dim(Vαβ) 

=dim(V ) − dim(Vα + Vβ) + l(αβ),           …(21) 

where it has been considered that Vα∩Vβ ⊂ Vαβ. Therefore, l(α)+l(β) = l(αβ) implies that V = Vα + Vβ. 

On the other hand, let us assume that Vα + Vβ = V and let ⟨ ,⟩ be a G invariant metric on V . For any v ∈ 
Vαβ, we have αβ(v) = v, and accordingly β(v) = α−1(v), and β(v) − v = α−1(v) − v. Furthermore, as the 
metric ⟨ ,⟩  is G invariant, we find that β(v)−v is orthogonal to Vβ with respect to the metric ⟨ ,⟩ and 
α−1(v)−v is orthogonal to Vα. Therefore β(v)−v = α−1(v)−v is orthogonal to Vα+Vβ, which is equal to V by 
the assumption of lemma. This implies that v must belong to Vα ∩ Vβ, and we have Vα∩ Vβ = Vαβ. It 
implies that  

L(α) + l(β) = dim(V ) – dim(Vα + Vβ) + dim(V ) – dim(Vαβ) = l(αβ)   

Hence, the theorem is proved. 
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