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Abstract  

 

We establish here connection between curvature of a generalized cylinder with geometric data on  M with 
spinor metric structure by comparing the Dirac operators for two different metrics based on 
identification and existence of semi-Riemannian metric. Specific objective is to investigate properties of 
spinors on a manifold foliated by semi-Riemannian hypersurfaces using commutator expansion and its 
normal derivative.  We derive algebraic properties of semi-Riemannian manifold initiated by H. Baunn by 
taking non-degenerate symmetric bilinear form. The two semi-Riemannian metrics on a manifold cannot 
always be joined by a continuous path of metrics even if they have the same signature. we show here that 
for a Codazzi tensor, the manifold can be embedded as a hypersurface into a Ricci flat manifold equipped 
with a parallel spinor which generalizes the case of Killing spinors. The classification of manifolds 
admitting Killing spinors that the cone over such a manifold possesses a parallel spinor.  
 

Keywords- Spinor manifold, Semi-Riemannian, Ricci curvature, Hyper surfaces, and, energy, 
momentum tensor 
 
1.1 Introduction  

 
The modified version of spin structure has the advantage of being independent of the choice of any semi-
Riemannian metric on X. An oriented manifold together with a spin structure is called a spin manifold. 
Let M be a manifold and let gt be a smooth 1-parameter family of semi-Riemannian metrics on M, such 
that t ∈ I ⊂ R. The manifold Z = I × M with the metric dt2 + gt is called a generalized cylinder over M. In 
a semi-Riemannian hypersurface with spacelike normal bundle it is always possible that every semi-
Riemannian manifold. The spacelike normal bundle is equivalent to the case of a time like normal bundle 
under restricted conditions which is closely related to the geometries of M and Z.  which characterized by 

the equation ∇M
Xψ = 1/2A(X)·ψ where A is a given symmetric endomorphism field. Let us identify 

spinors for 1-parameter families of semi-Riemannian metrics such that by taking a 1-parameter family of 
metrics the corresponding generalized cylinder and parallel transport on this cylinder coincide. The 
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identification is the same as the one for Riemannian metrics. We apply variation formula to compute the 
energy-momentum tensor for spinors.   

            (1) 
on Rn. The corresponding orthogonal group is defined as follows.  
O(r, s) := {A ∈ GL(n,R) | Av, Aw = v, w for all v, w ∈ Rn} …          (2) 
where as the special orthogonal group is defined by the relation  
SO(r, s) := {A ∈ O(r, s) | det(A) = 1}.  …            (3) 
If r = 0 or s = 0, then SO(r, s) is connected, otherwise it has two connected components. let Clr,s be the 
Clifford algebra corresponding to the symmetric bilinear form ·, ·. Which is called the unital algebra 
generated by Rn satisfying the relations  
v · w + w · v + 2 v,w · 1 = 0   …           (4) 
for all v,w ∈ Rn. Let us consider a decomposition into even and odd elements given by 

           …(5) 
such that R injects naturally into Cl0

r,s and Rn into Cl1
r,s. The spin group is defined by the relation  

    …(6) 
with multiplication inherited from Cl

r,s. Given v ∈ Rn such that v, v ≠ 0 and arbitrary w ∈ Rn we obtain 
that v−1 = − v /v,v and the equation  

       …(7) 
Hence −Adv is the reflection across the hyperplane v⊥ In particular, leaves Rn ⊂ Clr,s invariant. Thus 
conjugation gives an action of Spin(r, s) on Rn by an even number of reflections across hyperplanes. This 
yields the exact sequence 

 
Case – i) If n = r + s is even the Clifford algebra possesses an irreducible complex module r,s of complex 
dimension dimension 2n/2, the complex spinor module. In case of Cl0

r,s the spinor module decomposes into 

            …(8) 
the submodules of spinors of positive resp. negative chirality. In particular, the spin group Spin(r, s) ⊂ 
Cl0

r,s acts on +
r,s and on −

r,s. This action is given by 

     …(9) 
Which is called the spinor representation of Spin(r, s). Given an orientation on Rn the Cl0

r,s-submodules 

+
r,s and −

r,s may be characterized by the action of the volume element vol := e1 · · · en ∈ Cl0
r,s which acts 

on +
r,s as +is+n(n+1)/2id and on −

r,s as -is+n(n+1)/2id where e1, . . . , en is a positively oriented orthonormal 
basis of Rn.  

Case-ii) If n is odd, then Clr,s has two inequivalent irreducible modules 0
r,s and 1

r,s, both of complex 
dimension 2(n−1)/2. These two modules are again distinguished by the action of the volume element vol = 

e1 · · · en ∈ Cl1
r,s, namely vol acts as +is+n(n+1)/2id on 0

r,s and as −is+n(n+1)/2id on 1
r,s. When restricted to 

Cl0
r,s the two modules become equivalent and let us write r,s := 0

r,s. Now the spinor representation 

          …(10) 
is irreducible. All spinor modules carry nondegenerate symmetric sesquilinear forms ·, · which are 
invariant under the action of Spin(r, s). The action of a vector v ∈ Rn ⊂ Clr,s on r,s is skewsymmetric with 
respect to ·, ·, i.e. v·σ1, σ2 = −σ1, v · σ2. 
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1.2  Differentiable manifold and its comparison with spin manifold  
 

Let us choose X to denote an oriented n-dimensional differentiable manifold. The bundle PGL+(X) of 
positively oriented tangent frames forms a GL+(n,R)-principal bundle over X. GL+(n,R) denotes the group 
of real n×n-matrices with positive determinante and A : 𝐺𝐿෪ +(n,R) →𝐺𝐿+(n,R) its connected twofold 
covering group. A spin structure of X is a 𝐺𝐿෪ + (n,R)-principal bundle 𝑃ீ௅෪  (X) over X together with a 
twofold covering map  : 𝑃ீ௅෪  +(X) → PGL

+(X).  
 
1.3 Spin Manifold and its algebraic representation   
 

Let X has a semi-Riemannian metric of signature (r, s), r + s = n. The bundle PSO(X) ⊂ PGL+(X) of 
positively oriented orthonormal tangent frames forms an SO(r, s)-principal bundle over X. we restrict the 
mapping A : 𝑃ீ௅෪  + (n,R) → GL+(n,R) to the preimage of SO(r, s) ⊂ GL+(n,R) ⟹Ad : Spin(r, s) → SO(r, 
s). Putting PSpin(X) := −1(PSO(X)). Semi-Riemannian manifold PSpin(X) is called a spin structure of X and 
together with PSpin(X) is called a semi-Riemannian spin manifold. we define the spinor bundle of X as the 
complex vector bundle associated to the spinor representation, i. e. 

         …(11) 
Hence, for p ∈ X the fiber of pX of X over p consists of equivalence classes of pairs [b, σ] where b ∈ 
PSpin(X)p and σ ∈ r,s subject to condition that 

            …(12) 
for all g ∈ Spin(r, s). But, the spinor bundle cannot be defined independently of the metric using 𝑃ீ௅෪

+(X) 
instead of PSpin(X) because the spinor representation ρ of Spin(r, s) on r,s does not extend to a 
representation of 𝐺𝐿෪  + (n,R) on r,s.. The tangent bundle is written as, TX = PSO(X)×τR

n where τ is the 
standard representation of SO(r, s) on Rn. The Clifford multiplication  TpX ⊗ pX → pX is defined by 
the relation  

        …(13) 
where b ∈ PSpin(X)p, v ∈ Rn, and σ ∈ r,s. For g ∈ Spin(r, s) we obtain the relation  

 

 
which does not hold for non-oriented manifolds and pin structures.  
 
1.4 Impact of Clifford algebra on spinor manifold and its metric structure  
 

The spinor bundle of even dimension splits into the positive and the negative half-spinor bundles, 

 
where ±X = PSpin(X)×ρ}±

r,s. But, Clifford multiplication by a tangent vector interchanges +X and −X. 
The Spin(r, s)-invariant nondegenerate symmetric squilinear forms on r,s and ±

r,s induce inner products 
on X and ±X which is denoted by ·, ·. The connection 1-formωX on PSO(X) for the Levi-Civita 
connection ∇X are lifted via  to PSpin(X), i. e. ωX := Ad−1

∗ ◦∗(ωX) after composing with Ad−1
∗. The 

connection 1-form on PSpin(X) take values in the Lie algebra of Spin(r, s) rather than in that of SO(r, s). 
ωX induces a covariant derivative ∇X on X covariant derivative. we now define covariant derivative 
∇X. If b is a local section in PSpin(X), then (b) = (e1, . . . , en) is a local oriented orthonormal tangent 
frame, ei, ej ≡ εiδij where εi = ±1. The Christoffel symbols of ∇X with respect to this frame are given by 

               (14) 
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But the covariant derivative of a locally defined spinor field  = [b, σ], σ a function with values in r,s, is 
given by 

 
Here ∇X is a metric connection which gives the splitting in even dimensions invariant. 

 
for all vector fields Z and Y and all spinor fields . The curvature tensor RX of ∇X is evaluated in terms 
of the curvature tensor RX of the Levi-Civita connection, 

 
By an appropriate application of first Bianchi identity, relation is derived 

      …(15) 
where RicX denotes the Ricci curvature  known as an endomorphism field on TM. The Ricci curvature is 
a symmetric bilinear form expressed by ricX(Y,Z) = RicX(Y),Z. 
 
1.5 Spin Manifold and its hyper-surfaces 
 
Let us choose Z to be an oriented (n + 1)-dimensional semi-Riemannian spin manifold. Let ⊝ : PSpin(Z) 
→ PSO(Z) be a spin structure on Z. Let M ⊂ Z be a semi- Riemannian hypersurfacewith trivial spacelike 
normal bundle. Hence, there is a vector field ν on Z along M satisfying ν, ν = +1 and ν, TM = 0. If 
the signature of M is (r, s), then the signature of Z is (r + 1, s). M inherits a spin structure. The bundle of 
oriented orthonormal frames of M, PSO(M), can be embedded into the bundle of oriented orthonormal 
frames of Z restricted to M, PSO(Z)|M, by the map ι : (e1, . . . , en) → (ν, e1, . . . , en). Then PSpin(M) := 
⊖−1(ι(PSO(M))) defines a spin structure on M. Let us assume that this spin structure be taken on M. The 
algebraic structure of spin manifold shown that if n is even, then 

 
where the Clifford multiplication with respect to M is given by X ⊗ϕ → ν ·X · ϕ “·”. If n is odd, then 

 
and again Clifford multiplication with respect to M is given by X ⊗ ϕ → ν · X · ϕ where 

          …(16) 
with Clifford multiplication with respect to M given by X ⊗ ϕ → −ν · X · ϕ. The minus sign comes in 

odd dimensions r,s = 0
r,s while 1

r,s leads to the opposite sign for the Clifford multiplication. The 
identifications preserve the natural inner products ·, ·. Let W denote the Weingarten map with respect 
to ν, i. e. 

        …(17) 
for all vector fields X and Y on M. The Weingarten map is symmetric with respect to the semi-
Riemannian metric, W(X), Y = X,W(Y) and is given by W(X) = −∇Z

Xν. The Christoffel symbols 
of M with respect to a local orthogonal tangent frame (e1, . . . , en) is denoted by ΓM,k

ij and the Christoffel 
symbols of Z with respect to (e0, e1, . . . , en), e0 = ν, by ΓZ,k

ij, which implies that for 1 ≤ i, j, k ≤ n the 
following relations are satisfied.  
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     …(18) 
Combining above equations (18) we obtain the relations on a section ϕ = [b, σ] of Z|M (1 ≤ i ≤ n) 

 

 

        …(19) 
Hence, for each X ∈ TM and each section ϕ of Z|M,  

 
Let ϕ be a section of Z defined in a neighborhood of M, then  

 

 

 

         …(20) 

where 𝐷෩M = DM if n is even and 𝐷෩M = ቀ𝐷
ெ 0
0 −𝐷ெ

ቁ if n is odd. Thus the Dirac operators on M and on Z 

are related by 

        …(21) 
where H = 1/n tr(W) denotes the mean curvature. 
 
1.6 Theorem  
Let Z be an (n +1)-dimensional semi-Riemannian spin manifold. Let Z carry a semi-Riemannian foliation 
by hypersurfaces with trivial spacelike normal bundle, such that ν, ν = 1 and ∇Z

νν = 0.  
Proof 
Let W denote the Weingarten map of the leaves with respect to ν and let H = 1/n tr(W) be the mean 
curvature. Let us choose a local oriented orthonormal tangent frame (e1, . . . , en) for the leaves and 
assume that ∇Z

ν ei = 0. The following relation is satisfied and known as the Riccati equation.  
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 …(22) 
The Riccati equation for the Weingarten map (∇Z

νW)(X) = RZ(X, ν)ν +W2(X) implies that the following 
relation holds.  

 

 

       …(23) 
The Codazzi-Mainardi equation as given by B.O’ Neill for X, Y, V ∈ TpM is expressed as  

 
 
Thus, we obtain the following equation  

 

 

          …(24) 
Combining these two equations, we get 
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Hence, the theorem is proved. 
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