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Abstract 
 

F. Ikeda introduced the properties of Finsler spaces satisfying the condition L2C2 = f(x) in the year 1984, 
where L is the fundamental function and C is the length of the torsion vector Ci. In 1991, Ikeda introduced 
the condition: L2C2 = non-zero constant. In 1977, Matsumoto and Miron introduced the theory of 
intrinsic orthonormal frame field on n-dimensional Finsler space, as a generalization of Berwald’ and 
Moor’s ideas on two-dimensional and three-dimensional Finsler space respectively. Ikeda in the year 
1991 and Singh and Kumari in the year 2000 have studied the three-dimensional Finsler space with 
constant unified main scalar. In 2007, Prasad, Chaubey and Patel have discussed the theory of the four- 
dimensional Finsler space with constant unified main scalar. A Finsler space Fn is called Ch-symmetric 
Finsler space if Cijklh = Cijhlk . In the presentpaper,we have discussed the theoryofthe four-dimensional Ch-
symmetric Finsler space with contant unified main scalar . 

Keywords- Ch-symmetric Finsler space, Miron frame, unified main scalar, Landsberg space  

Introduction 

Ikeda (1984) has discussed the properties of Finsler spaces satisfying the condition L2C2 = f(x), where L 
is the fundamental function and C is the length of the torsion vector Ci. In 1991, Ikeda has considerd the 
condition:  L2C2 = non-zero constant which is stronger than the corresponding condition considered in 
1984. A two-dimensional Berwald space is an example of such a Finsler space with constant function LC. 
A theory of intrinsic orthonormal frame field on n -dimensional Finsler space, as a generalization of 
Berwald’s and Moor’s ideas on two-dimensional and three-dimensional Finsler space respectively, has 
been studied by Matsumoto and Miron (1977).  The three-dimensional Finsler space with constant unified 
main scalar has been studied by Ikeda (1991) and Singh and Kumari (2000). Recently, Prasad, Chaubey 
and Patel (2007) has discussed the theory  of the four-dimensional Finsler space with constant unified 
main scalar.They especially found the scalar components of v-scalar curvature S and the conditions under 

which v-connection vectors vanish with respect to Cartan’s connection C The purpose of the present 
paper is to obtain the condition under which h-connection vectors vanish with respect to the Cartan’s 
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connection CΓ of the four-dimensional Ch-symmetric Finsler space with constant unified main scalar. 
Also, the h-connection vectors of C-reducible, semi C-reducible and C2-like four-dimensional Ch-
symmetric Finsler space with constant unified main scalar has been determined. The orthonormal frame 
field (li, mi, ni, pi) called the Miron frame plays an important role in four-dimensional Finsler space.   

Scalar components in Miron frame- Let us consider a four-dimensional Finsler space F4 with the 
fundamental function L(x,y). The metric tensor gij and C-tensor Cijk of F4 are defined by 

̇gij = (1/2)∂ ̇ı̇∂ ̇jL
2,     Cijk = (1/4)∂ i̇∂ ̇j∂ ̇kL

2. 

Throughout this paper we use the symbols ∂ ̇i = ∂/∂yi and ∂i = ∂/∂xi. The frame ei
(,  = 1, 2, 3, 4 is 

called Miron frame of F4, where ei
(1 = li =yi/L is the normalized supporting element, ei

(2) = mi = Ci/C is the 

normalized torsion vector, ei
(3) = ni, ei

(4) = pi are constructed by gije
i
()e

j
() = . Here C is the length of 

torsion vector Ci = Cijkg
jk. The Greek letters , , ,  vary from 1 to 4 throughout the paper. Summation 

convension is applied for both the Greek and Latin indices. 

In the Miron’s frame an arbitrary tensor can be expressed by scalar components along the unit vectors li, 

mi, ni, pi. For instance, let T = Ti
j be a tensor field of (1,1) type, then the scalar components T of Ti

j are 
defined by  

T = Ti
j e(ie

j
 

and the components Ti
j of the tensor T are expressed as 

Ti
j = Te

i
(e(j  . 

From the equations  gije
i
(e

j
( = , we have  

                            gij = lilj + mimj + ninj + pipj   .                                                                             (2.1) 

             Next the C-tensor Cijk = (1/2)∂kgij satisfies Cijkl
i = 0 and is symmetric 

in  i, j, k, therefore if C are scalar components of LCijk, that is if 

LCijk = Ce()ie()je()k,    
                        (2.2) 

Then we have 

              LCijk = C222mimjmk + C233ijk)minjnk + C244ijkmipjpk +C322ijkmimjnk} + C333ninjnk + 

C344(ijk)nipjpk}  +C422ijk)mimjpk} +  C433(ijk){ninjpk} + C444pipjpk                  ( 2.3) 

                              +C234(ijk){mi(njpk + nkpj)}, 

where (ijk){….} denote the cyclic interchange of i, j,k and summation. For instance 

   (ijk){AiBjCk} = AiBjCk + AjBkCi + AkBiCj  . 

Contracting (2.2) with gjk, we get LC mi = Ce(i. Thus if we put 
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                            C222 = H, C233 = I, C244 = K, C333 = J, 

        C344 = J', C444 = H', C433 = I', C234 = K'                                                          (2.4) 

then we have (Pandey and Divedi, 1997) 

     H + I + K = LC,      C322 = J +J',     C422 = H' + I')                   (2.5) 

The eight scalars H, I, J, K, H', I', J', K' are called the main scalars of a four-dimen- 

sional Finsler space. We shall use Cartan’s connection C = (i
jk, G

i
j, C

i
jk) in the following section of this 

paper. The h-covariant derivative of the frame field e(α)i are given by (Matsumoto, 1986) 

    e(α)ilj = αβγeβieγj ,                                (2.6) 

where  Hαβγ, γ being fixed, are given by 

                            0    0    0    0   

Hβ    0    0    h   J        

    0   -h  0    k   

    0   -J  -k    0                                                                   (2.7) 

                 

   H(2)3 = H(3)2 = h        

   H(2)4 =  =  J 

    =   =  k 

Thus, in four-dimensional Finsler space there exist three h-connection vect- ors hi, Ji, ki whose scalar 

components with respect to Miron frame are h, J, k that is 

hi = hei,  Ji = Je(i,  ki = ke(i                   (2.8) 

             A  Finsler space Fn is called Ch-symmetric Finsler space if 

     Cijklh = Cijhlk         (2.9)
 where l denote h-covariant derivative with respect to Cartan’s connection. 

             With the help of equations (2.7) and (2.8), the equation (2.6) can be explicitly written as        
  

 lilj = 0,  milj = nihj + piJj ,  nilj = pikjmihj  ,  pilj = miJjnikj                      (2.10) 

  The h-scalar derivative of the adopted components T of the 
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tensor Ti
j of (1,1) type is defined as (Matsumoto, 1986) 

  T = kTe
k
 +  +  ,                                                                      (2.11) 

where k = ∂k  Gr
k∂r . 

Thus T is adopted components of Ti
jιk that is 

  i
jιk =Te

i
(e(je()k .                                                                                                               (2.12) 

From (2.2) it follows that 

 LChijlk = Ceheiejek                                   (2.13) 

The explicit form of C is easily obtained : 

(a)  C1  =   0,    (b)  C222  = H + 3(J + J)h + 3(H + IJ,    

(c)  C223  =  J + J    h  J   k,                                                                                                 (2.14)  

 (d)  C233  =    J  Jh  J  k,   

e  C  =  +  h + (  J J + Jk, 

 f  C234  =      h J  JJ +   k, 

(g)  C      Jh    J  k, 

h  C  =  J  h k, 

 (i)   C334  =   + 2h + J + J  Jk, 

ϳ   C344  =  J + h  J +   k, 

k   C  =   + J + Jk, 

where H , for instance is the h-scalar derivative of the single scalar H namely H  iei
   

Making use of equation (2.9) equation  yields 

         Cαβγδ   ̶  Cαβδγ   0.                                              (2.15) 

This equation is explicitly written as 

(a)     ̶  (J + J + (H  ̶  Ih2  ̶  KJ + (H + Ik2    H + J + Jh3 + 3(H + IJ3,   

b)   I2  ̶  J + 2Jh2  ̶  IJ2  ̶  Kk2     ̶  J + J +   ̶  2Ih3   ̶  KJ +  +Ik3 , 

c   K  ̶   ̶  Ih2  ̶  J + JJ2 + I  k2 

        =   J  J +   h4  J    k4 

        =    +    ̶  h3 +   J3  ̶  J  Jk3, 
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(d)    J,2 + 3Ih2  3Ik2   = I,3  J + 2Jh3  IJ3  2k3,                                                                    (2.16)  

e)     I + h2 + J2  J  Jk2      J + 2J)h4  IJ4  2Kk4 

        =  K    h3  J  JJ    k3,  

 (f)     J  h2  J2 +  k2  =    Jh3    J3  k3  

              h4  J + JJ     k4, 

(g)      +    h2 + (  J2  J Jk2  =    J  Jh4    J4, 

h       Jh2   + J2  k2  =       h4    J4  J + Jk4,      

i        J2  Jk2     Jh4   J  k4, 

(j)       + h3 + J3 + J  Jk3    J  h4  k4,  

(k)    J  h3 + 2J3 + (2I  k3     + 2Kh4 + J4 + (J  Jk4,   

l         J3  Jk3    J  h4  J4    k4,      

m)     J  Jh1  J1  k1    0. 

              Since Cijhy
h = 0 and yh

lk. Hence from (2.9) it follows that Cijklhy
h=0  

 that is Pijk=0. Therefore we have the following : 

THEOREM 2.1 A Ch-symmetric Finsler space is a Landsberg space. The converse of theorem (2.1) is 
not necessary true so the Ch-symmetric Finsler space is more general than the Landsberg space.   

 The constant unified main scalar 

 In a four-dimensional Finsler space, H + I + K = LC is called unified main scalar. Now, we consider 
four-dimensional Ch-symmetric Finsler space with non-zero constant unified main scalar. Therefore, we 
have 

   (H + I + K),α = (LC),α = 0 for α = 1, 2, 3, 4.                                                                  (3.1) 

Adding equations (2.16)(a), (2,16)(d), the first part of (2.16)(f) and applying (3.1), we get h2 = 0. 
Similarly, adding equations (2.16)(g), (2,16)(i) and first part of (2.16)(e) and applying equation (3.1), we 
get J2 = 0. Again adding (2.16) (j), (2.16)(l), the last equation of (2.16)(c) and applying equation (3.1), we 
get get 

J3=h4. Hence we have the following: 

THEOREM 3.1 In a four-dimensional Ch-symmetric Finsler space with non-zero 

constant unified main scalar, the scalar components of h-connection vectors hi and Ji are given by 

 hi = h1li + h3ni + h4pi, Ji = J1li + J3ni + J4pi, where J3 = h4. 
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In view of theorem (3.1), the independent equation in (2.16) can be rewritten as 

(a)  I,2  2Kk2  =  J + J    h3  J3 + (H k3,  

(b)  J,2  k2 + 2k3 =   J + Jh3  h4, 

c)   + J  Jk2  k3        h3  J  Jh4, 

(d)  J   k2 k3      Jh3    J3, 

e)     k2  =   J + J    J3  J4 + (H  k4,                     (3.2) 

f   + k2  J + Jk4        J3 + (  J4, 

(g)   +J  Jk2  + 2k  =  ,4  J  JJ3  J4, 

h  J   k2  k  =        J3   J  J J4, 

i)     Jk2  2k      JJ    J4,   

(j)  J  J3      h3  J  Jk3  k4,  

 k)    J4    J  h3  2I  k3  J  Jk4,  

l)  J  J  J4      Jk3    k4. 

      If we suppose that the non-vanishing main scalars are H, I, K then we have 

J  =  J = H =  =   . Then equations (2.16) reduce to 

 (a)  H  H  h2,                                       b      h3, 

c  H  2K)J3 = (H  2I)h4 = (I  K)k2, 

(d)  I3 = 3Ih2,                                                 (e)  I,4 = IJ2 = (I  K)k3,                                 (3.3) 

(f)  K,3 = Kh2 = (I  K)k4,                             (g)  H,4 = (H  2K)J2, 

(h)  K,2 = (H  2K)J4,                                      (i)  K,4 = 3KJ2, 

(j)   J3 = 3h4,                                                   (k)  Kh3 = IJ4,  

(l)    3J3 = h4  .  

           From (3.3) (c), (j) and (e) it can be seen that J3 = h4 = 0 and either k2 = 0 or  

I = K. To solve the remaining aforesaid equations, we consider the following cases: 

 ()  H ≠ 2I ≠ 2K, (  H = 2I ≠ 2K,             H ≠ 2I = 2K, 

 V) H = 2K ≠ 2I, (V)  H = 2I ≠ 2K, 

 Case(1).  Solving equations in (3.3) for scalar component of h-connection vectors with the help of  H + I 
+ K = LC, we have 
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(a)  h1 is arbitrary,  h2  = {(LC),3}/(LC),   h3  =  I,2/(H2I),   h4 = 0,      

(b)  J1 is arbitrary,       J2  =  {(LC),4}/(LC),       J3  = 0,                     (3.4) 

       J4  = (KI,4)/{I(H2I)}  =  (K,2)/(H2K),                

(c)  k1 is arbitrary,    k2 = 0,       k3  =  (I,4)/(IK) =  {I(LC),4}/{(IK)LC},  

      k4  =  {K(LC),3}/{(IK)LC}  =  (K,3)/(IK).   

              From case (), we have H,α = I,α = 0 for α = 2, 3 and h-connection vectors are such that  

(a)  h1 is arbitrary,  h2 = 0,  h3 = (IK,2)/{K(H2K)},  h4 = 0, 

(b)  J1 is arbitrary,  J2 = {(LC),4}/(LC),  J3 = 0,  J4 = (K,2)/{(H2K)                                 (3.5) 

(c)  k1 is arbitrary,  k2 = 0,  k3 = {I(LC),4}/{(IK)LC},  k4 = 0 . 

           From case (), we have K,α = I,α =0 for α = 3, 4, H,3 = 0 and h-connection vectors are such that 

(a)  h1 is arbitrary,     h2 = 0,      h3 = (I,2)/(H2I),     h4 = 0,  

(b)   J1 is arbitrary,   J2 = 0,   J3 = 0,  J4 = (KI,2)/{I(H2I)}=(K,2)/(H2K),                                             (3.6) 

(c)  k1, k2, k3, k4  are arbitrary. 

           From case (V), we have K,α = H,α = 0 for α = 2,4,  I,4 = 0 and h-connection vectors are such that 

(a)  h1 is arbitrary,  h2 = {(LC),3}/(LC),  h3 = (H2I)1I,2,  h4 = 0,   

(b)  J1 is arbitrary,  J2 = 0,  J3 = 0,  J4 = (KI,2)/{I(H2I)},                                               (3.7) 

(c)  k1 is arbitrary,   k2 = 0,   k3 = 0,   k4 = {K(LC),3}/{(IK)LC = ( K,3)/(IK).  

           From case (V), we have H,α = I,α = K,= 0 for α = 2, 3, 4 and h-connection vectors are such that 

 (a)  h1,  h3 are arbitrary and h2 = h4 = 0,                                  (3.8) 

 (b)  J1, J4 are arbitrary and J2 = J3= 0, 

(c)  ki is arbitrary. 

           Summarizing above results, we have the following : 

THEOREM 3.2  Let F4 be a four-dimensional Ch-symmetric Finsler space with 

non-zero constant unified main scalar. If the main scalars are such that J = H =   

= = J  0, then 

()  for H ≠ 2I ≠ 2K, the h-connection vectors vanishes iff I,2=0 whereas k1, J1, and 

h1 are arbitrary, 
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()  for H = 2I ≠ 2K, the h-connection vectors vanishes iff K,2=0 whereas k1, J1, h1 are arbitrary, 

(  for H ≠ 2I = 2K, the h-connection vectors vanishes iff I,2=0 whereas h1, J1 and ki are arbitrary, 

(V)  for H = 2K ≠ 2I, the h-connection vectors vanishes iff I,2=0 whereas h1, J1, and k1 are arbitrary, 

(V)  for H = 2I = 2K, we have hi = h1li + h3ni, Ji = J1li + J4pi, ki are arbitrary. 

 REMARK- Here the question arises. Does four-dimensional Ch-symmetric C-  reducible Finsler space is 
C-reducible? A four-dimensional Ch-symmetric C-reducible Finsler space is C-reducible. In above 

theorem we have supposed that J = H = I = K = J=0. These conditions also hold in C-reducible Finsler 
space (Prasad, Chaubey and Patel, 2007). Besides C-reducible Finsler space, there are also some special 
Finsler space in which these conditions hold which is given below : 

EXAMPLE 1. A Finsler space of dimension n (n>2) is called C-reducible if Cijk is 

Written as (Matsumoto, 1986). 

        Cijk = (Cihjk + Cjhki + Ckhij)/(n + 1),                                         (3.9) 

where hij is the angular metric tensor. Since α  1α1 are scalar components of 

hij with respect to the Miron’s frame {ei
(α)} of F4, therefore in terms of scalar components equation (3.9) 

can be written for a four-dimensional C-reducible  

Finsler space as 

       Cα =[LC{α11+α11α+α1α1)}]5                                                        (3.10) 

              Using the notation given in (2.4), the above equation gives 

         J = H = I = K = J = 0 ,      H = 3I = 3K= (3/5)LC                                                                      (3.11)  

If the unified main scalar is constant, LC is constant . Therefore, H, I, K are constant and we have the 
following result : 

THEOREM 3.3- In a four-dimensional C-reducible Finsler space with non-zero constant unified main 
scalar, the main scalars H, I and K are non-zero constants and all the remaining scalars vanish.  

Using equation (3.11) and theorem (3.3) in eqation (3.3), we obtain hα = Jα = 0 for α  2, 3, 4. Hence, we 
have the following : 

THEOREM 3.4 - In a four-dimensional Ch-symmetric C-reducible Finsler space with non-zero constant 
unified main scalar, the h-connection vectors hi and Ji vanish identically if h1 = J1 = 0 . 

EXAMPLE-2 If Cijk of a Finsler space of dimension n>2 is written in the form 

Cijk = p( hijCk + hjkCi + hkiCj )/(n+1)  +  (q/C2)CiCjCk                                                                            (3.12) 

where pq   . If p and q are constants, it is called semi C-reducible Finsler space 



Journal of Progressive science, vol.5, no.1, 2014 
 

50 
 

with constant coefficients (Matsumoto and Numata, 1980) . In terms of scalar components the equation 
(3.12) can be written for a four-dimensional space as 

     Cα = [pLC{ α(   1 +  α  α  

                    +  α  α}]/5 + qLCα .                                                                             (3.13) 

             Using the notation given in (2.4), the equation (3.13) gives 

 J = H = I = K = J = 0,    H = LC{( 3p/5) + q },  I = K = pLC/5                                                        (3.14) 

THEOREM 3.5  In a four-dimensional semi C-reducible Finsler space with constant coefficient and 
constant unified main scalar, the main scalars H, I and K are non-zero constant and all the remaining main 
scalars vanish . 

 Using equation (3.14) and theorem (3.5) in equation  (3.3), we get hα = Jα = 0 

for α  2, 3, 4 . Hence we have the following : 

Theorem 3.6  In a four-dimensional Ch-symmetric semi C-reducible Finsler space with constant 

coefficient and constant unified main scalar, the h-connection vectors hi and Ji vanish identically if h1  J1 

 0. 

Example 3. An n-dimensional (n>2) Finsler space is called C2-like (Matsumoto and Numata, 1980) if Cijk 
= CiCjCk/C

2. Thus for a four-dimensional C2-like Finsler space, we have 

              H  LC,      JJ0. 

Hence, we have the following - 

THEOREM 3.7 - In a four-dimensional C2-like Finsler space all the main scalars vanish except the main 
scalar H that is equal to the unified main scalar LC. 

4. The results reducible to three dimensional Finsler space 

 In three-dimensional Finsler space there are only three main scalars   J and one h-connection vectors 

hi. Therefore putting K=J0 and Ji=ki=0 in (2.14), we get 

                  C1  0   C222   Jh,   C223   J  h, 

                            C233  Jh,    C333 Jh. 

This equation is same as equation (29.13) of the book (Matsumoto,1986, page 195) for three dimensional 

Finsler space. Besides this equation (2.16) takes the form    J  h2  Jh3,     Jh2  J  

h3, J  h2    Jh3.  

For three dimensional Finsler space theorem(3.3) and (3.4) can be written as: 
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THEOREM 4.1  In a three-dimensional C- reducible Finsler space with non-zero constant unified main 
scalar, the main scalars H and I are constants given by 3LC/4 and LC/4 whereas J=0 (Matsumoto, 1973, 
Ikeda, 1991). 

THEOREM 4.2  In a three-dimensional Ch-symmetric C-reducible Finsler space with non-zero constant 
unified main scalar, the h-connection vectors vanish identically if h1=0. 
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