

Conformal Exponential Change of Finsler Metric

B. N. Prasad, S. K. Tiwari* and Neerja Shukla* C-10, Suraj Kund Colony, Gorakhpur (U.P.), India

Email - baijnath prasad2003@yahoo.co.in

*Department of Mathematics K.S. Saket P.G. College, Ayodhya, Faizabad (U.P.), India

Email - sktiwarisaket@yahoo.com

Abstract

The purpose of the present paper is to find the necessary condition under which a conformal exponential change becomes a projective change. We have also found the conditions under which conformal exponential change of Douglas space becomes a Douglas space.

Keywords- Conformal exponential change, Projective change, Finster space, Douglas space.

1. Introduction

Let $F^n=(M^n,L)$ be a Finster space equipped with the fundamental function L (x,y) on the smooth manifold M^n . Let $\beta=b_i(x)y^i$ be one-form of the manifold M^n , then $L\to \overline{L}e^{\beta/\overline{L}}$, $\overline{L}=e^{\sigma}L$ is called conformal exponential change of Finster metric. If we write $L^*\to \overline{L}e^{\beta/\overline{L}}$ and $F^{*n}=(M^n,L^*)$, then the Finsler space F^{*n} is said to be obtained from F^n by a conformal exponential change. The quantities corresponding to F^{*n} are denoted by putting star on those quantities.

2. Preliminaries

We shall denote the partial derivative with respect to x^i and y^i by ∂_i and respectively and write $L_i = \partial_i L$, $L_{ij} = \partial_i \partial_i L$, $L_{ijk} = \partial_i \partial_i \partial_k L$. Then $h_{ij} = LL_{ij} =$ angular metric tensor of F^n .

The geodesics of Fⁿ are given by the system of differential equations

$$\frac{d^2x^i}{ds^2} + G^i\left(x, \frac{dx}{ds}\right) = 0$$

where $G^{i}(x,y)$ are positively homogenous of degree two in y^{i} and are given by

$$2G^{i} = g^{ij}(y^{r}\dot{\partial}_{j}\partial_{r}F - \partial_{j}F), \quad F = \frac{L^{2}}{2}$$
(2.1)

where g^{ij} is the inverse of $g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial v^i \partial v^j}$.

The well known Berwald connection $G\Gamma = (G_{jk}^i, G_j^i)$ of the Finsler space is constructed from the quantity G^i appearing in the equation of geodesic and is given by Park and Lee (2001)

$$G_{j}^{i} = \dot{\partial}_{j}G^{i}, \qquad G_{jk}^{i} = \dot{\partial}_{k}G_{j}^{i}.$$

The Cartan's connection is constructed from the metric function L by the following five axioms Park and Lee (2001)

$$(i) \quad g_{ij|k} = 0 \,, \quad (ii) \quad g_{ij|k} = 0 \quad (iii) \quad F_{jk}^i = F_{kj}^i \quad (iv) \quad F_{0k}^i = G_k^i \quad (v) \quad G_{jk}^i = G_{kj}^i$$

where $_{|k}$ and $|_{k}$ denote h- and v-covariant derivatives with respect to $C\Gamma$. The h-covariant derivatives of L_{i} , L_{ii} with respect to $C\Gamma$ are zero.

We shall denote

$$2r_{ij} = b_{i|j} + b_{j|i}, 2s_{ij} = b_{i|j} - b_{j|i}.$$
 (2.2)

3. Conformal Exponential Change of Finsler Metric

The conformal exponential change of Finsler metric L is given by

$$L^* = \overline{L}e^{\beta/\overline{L}} \tag{3.1}$$

where $\beta(x, y) = b_i(x) y^i$.

We may put

$$G^{*i} = G^{i} + D^{i}$$
. (3.2)

Then $G_j^{*i} = G_j^i + D_j^i$ and $G_{jk}^{*i} = G_{jk}^i + D_{jk}^i$, where $D_{jk}^i = \dot{\partial}_j^i D_k$ and $D_j^i = \dot{\partial}_j D^i$. The tensors D^i , D_j^i and D_{jk}^i are positively homogeneous in y^i of degree two, one and zero respectively.

To find D^i we deal with equations $L_{ij|k} = 0$ and $L_{ij|k}^* = 0$ in F^n and F^{*n} respectively (Mosmoto, 1974). i.e.,

(a)
$$\partial_k L_{ij} - L_{ijr} G_k^r - L_{ir} F_{jk}^r - L_{jr} F_{ik}^r = 0,$$
 (3.3)

$$(b) \hspace{1cm} \partial_k L_{ii}^* - L_{iir}^* G_k^{*r} - L_{ri}^* F_{ik}^{*r} - L_{ir}^* F_{jk}^{*r} = 0.$$

Since $\partial_i\beta=b_i^{}$, $\dot{\partial}_iL=e^\sigma L_i^{}$ from (3.1), we have

(a)
$$L_{i}^{*} = \left(1 - \frac{\beta}{\overline{L}}\right) e^{\sigma} e^{\beta/\overline{L}} L_{i} + e^{\beta/\overline{L}} b_{i}$$
 (3.4)

$$(b) \hspace{1cm} L_{ij}^* = \hspace{-0.5cm} \left(1 - \frac{\beta}{\overline{L}}\right) e^{\sigma} e^{\beta/\overline{L}} \hspace{0.1cm} L_{ji} + e^{\beta/\overline{L}} \left\lceil \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_i L_j - \frac{\beta e^{\sigma}}{\overline{L}^2} (L_i b_j + L_j b_i) + \frac{1}{\overline{L}^2} b_i b_j \right\rceil$$

$$(c) \hspace{1cm} \partial_{j}L_{i}^{*} = \hspace{-0.1cm} \left(1 - \frac{\beta}{\overline{L}}\right)\hspace{-0.1cm} e^{\sigma}e^{\beta/\overline{L}} \left(\partial_{j}L_{i}\right) + e^{\beta/\overline{L}} \hspace{-0.1cm} \left[\left\{ \frac{\beta^{2}e^{2\sigma}}{\overline{L}^{3}}L_{i} - \frac{\beta e^{2\sigma}}{\overline{L}^{2}} \right\} (\partial_{j}L) \right.$$

$$+ \left\{ \frac{\beta e^{\sigma}}{\overline{L}^{2}} L_{i} - \frac{1}{\overline{L}} b_{i} \right\} (\partial_{j} \beta) + (\partial_{j} b_{i}) + \left\{ \left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^{2}}{\overline{L}^{2}} \right) e^{\sigma} L_{i} - \frac{\beta}{\overline{L}} b_{i} \right\} \sigma_{j}$$

$$(d) \qquad \partial_k L_{ij}^* = \left(1 - \frac{\beta}{\overline{L}}\right) e^{\sigma} e^{\beta/\overline{L}} \left(\partial_k L_{ij}\right) + e^{\beta/\overline{L}} \left[\left\{ \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_{ij} - \frac{e^{3\sigma} \beta^2 (\beta + 3\overline{L})}{\overline{L}^5} L_i L_j \right\} \right]$$

$$\left. + \frac{e^{2\sigma}\beta(\beta+2\overline{L})}{\overline{L}^4}(L_ib_j + L_jb_i) - \frac{(\beta+\overline{L})}{\overline{L}^3}b_ib_j \right\} (\partial_k L)$$

$$+\left\{\frac{-\beta e^{\sigma}L_{ij}}{\overline{L}^{2}}+\frac{e^{2\sigma}\beta(\beta+2\overline{L})}{\overline{L}^{4}}L_{i}L_{j}-\frac{(\beta+\overline{L})e^{\sigma}}{\overline{L}^{3}}(L_{i}b_{j}+L_{j}b_{i})+\frac{1}{\overline{L}^{2}}b_{i}b_{j}\right\}(\partial_{k}\beta)$$

$$+ \left\{ \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_j - \frac{\beta e^{\sigma}}{\overline{L}^2} b_j \right\} (\partial_k L_i) + \left\{ \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_i - \frac{\beta e^{\sigma}}{\overline{L}^2} b_i \right\} (\partial_k L_j)$$

$$- \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_j - \frac{1}{\overline{L}} b_j \right\} (\partial_k b_i) - \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_i - \frac{1}{\overline{L}} b_i \right\} (\partial_k b_j)$$

$$+ \left\{ \! \left(1 \! - \! \frac{\beta}{\overline{L}} \! + \! \frac{\beta^2}{\overline{L}^2}\right) \! e^{\sigma} L_{ij} - \! \frac{(\beta + \overline{L})e^{2\sigma}\beta^2}{\overline{L}^4} L_i L_j - \! \frac{(\beta + \overline{L})}{\overline{L}^2} b_i b_j - \! \frac{(\beta + \overline{L})}{\overline{L}^4} L_i L_j \right. \\$$

$$+\frac{\beta(\beta+\overline{L})e^{\sigma}}{\overline{L}^{3}}(L_{i}b_{j}+L_{j}b_{i})\bigg\}\sigma_{k}$$

$$(e) \hspace{1cm} L_{ijk}^* = \left(1 - \frac{\beta}{\overline{L}}\right) e^{\sigma} e^{\beta/\overline{L}} \hspace{1cm} L_{ijk} + e^{\beta/\overline{L}} \left\lceil \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} (L_i L_{jk} + L_j L_{ik} + L_k L_{ij}) \right\rceil$$

$$\begin{split} &-\frac{\beta e^{\sigma}}{\overline{L}^2}(L_{ij}b_k+L_{jk}b_i+L_{ik}b_j)-\frac{\beta^2 e^{2\sigma}(\beta+3\overline{L})}{\overline{L}^5}L_iL_jL_k\\ &+\frac{\beta(\beta+2\overline{L})e^{2\sigma}}{\overline{L}^4}(L_iL_jb_k+L_jL_kb_i+L_kL_ib_j)-\frac{(\beta+\overline{L})e^{\sigma}}{\overline{L}^3}\times\\ &(L_ib_jb_k+L_jb_ib_k+L_kb_ib_j)+\frac{1}{\overline{L}^2}b_ib_jb_k \,\bigg]. \end{split}$$

From (3.2) and (3.3) (b), we have

$$\partial_k L_{ij}^* - L_{ijr}^* (G_k^r + D_k^r) - L_{rj}^* (F_{ik}^r + {}^c D_{ik}^r) - L_{rr}^* (F_{jk}^r + {}^c D_{jk}^r) = 0$$

where $F_{jk}^{*i} - F_{jk}^i = {}^cD_{jk}^i$.

Substituting the values of $\hat{\sigma}_k L_{ij}^*$, L_{ir}^* and L_{ijr}^* from (3.4), using (3.3) (a) and contracting the result thus obtained by y^k , we get

$$\begin{split} &2\Bigg[\Bigg(1-\frac{\beta}{\overline{L}}\Bigg)e^{\sigma}\,L_{ijr}+\frac{\beta^{2}e^{2\sigma}}{\overline{L}^{3}}\big(L_{i}L_{jr}+L_{j}L_{ir}+L_{r}L_{ij}\big)-\frac{\beta e^{\sigma}}{\overline{L}^{2}}\big(L_{ij}b_{r}+L_{jr}b_{i}+L_{ri}b_{j}\big) \quad (3.5) \\ &-\frac{\beta^{2}(\beta+3\overline{L})e^{3\sigma}}{\overline{L}^{5}}\,L_{i}L_{j}L_{r}+\frac{\beta(\beta+2\overline{L})e^{2\sigma}}{\overline{L}^{4}}\big(L_{i}L_{j}b_{r}+L_{i}L_{r}b_{i}+L_{r}b_{i}b_{j}\big) \\ &-\frac{(\beta+\overline{L})e^{\sigma}}{\overline{L}^{3}}\big(L_{i}b_{j}b_{r}+L_{j}b_{i}b_{j}+L_{r}b_{i}b_{j}\big)+\frac{1}{\overline{L}^{2}}b_{i}b_{j}b_{r}\Bigg]D^{r} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}\Bigg)e^{\sigma}\,L_{ir}+\frac{\beta^{2}e^{2\sigma}}{\overline{L}^{3}}\,L_{r}L_{j}-\frac{\beta e^{\sigma}}{\overline{L}^{2}}\big(L_{j}b_{r}+L_{r}b_{j}\big)+\frac{1}{\overline{L}}\,b_{j}b_{r}\Bigg\}D^{r}_{i} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}\Bigg)e^{\sigma}\,L_{jr}+\frac{\beta^{2}e^{2\sigma}}{\overline{L}^{3}}\,L_{r}L_{i}-\frac{\beta e^{\sigma}}{\overline{L}^{2}}\big(L_{i}b_{r}+L_{r}b_{i}\big)+\frac{1}{\overline{L}}\,b_{i}b_{r}\Bigg\}D^{r}_{j} \\ &+\Bigg\{\frac{\beta e^{\sigma}}{\overline{L}^{2}}\,L_{j}-\frac{1}{\overline{L}}\,b_{j}\Bigg\}\big(r_{i0}+s_{i0}\big)+\Bigg\{\frac{\beta e^{\sigma}}{\overline{L}^{2}}\,L_{i}-\frac{1}{\overline{L}}\,b_{i}\Bigg\}\big(r_{j0}+s_{j0}\big) \\ &+\Bigg\{\frac{\beta e^{\sigma}}{\overline{L}^{2}}\,L_{ij}-\frac{\beta(\beta+2\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}+\frac{(\beta+\overline{L})e^{\sigma}}{\overline{L}^{3}}\big(L_{i}b_{j}+L_{j}b_{i}\big)-\frac{1}{\overline{L}^{2}}\,b_{i}b_{j}\Bigg\}r_{00} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}+\frac{\beta^{2}}{\overline{L}^{2}}\Bigg)e^{\sigma}L_{ij}-\frac{\beta^{2}(\beta+\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}-\frac{(\beta+\overline{L})}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}+\frac{\beta^{2}}{\overline{L}^{2}}\Bigg)e^{\sigma}L_{ij}-\frac{\beta^{2}(\beta+\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}-\frac{(\beta+\overline{L})}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}+\frac{\beta^{2}}{\overline{L}^{2}}\Big)e^{\sigma}L_{ij}-\frac{\beta^{2}(\beta+\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}-\frac{(\beta+\overline{L})}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}+\frac{\beta^{2}}{\overline{L}^{2}}\Big)e^{\sigma}L_{ij}-\frac{\beta^{2}(\beta+\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}-\frac{(\beta+\overline{L})}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\Bigg\{\Bigg(1-\frac{\beta}{\overline{L}}+\frac{\beta^{2}}{\overline{L}^{2}}\Big)e^{\sigma}L_{ij}-\frac{\beta^{2}(\beta+\overline{L})e^{2\sigma}}{\overline{L}^{4}}\,L_{i}L_{j}-\frac{(\beta+\overline{L})}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{j}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{j}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{j} \\ &+\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{i}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{i} \\ &+\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{i}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}b_{i}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}-\frac{\beta^{2}}{\overline{L}^{2}}\,b_{i}-\frac{\beta^{2}}{\overline{L$$

$$\left. + \frac{\beta e^{\sigma} (\beta + \overline{L})}{\overline{L}^3} (L_i b_j + L_j b_i) \right\} \sigma_0 = 0 \; , \label{eq:sigma-def}$$

where '0' stands for contraction with y^k , viz. $r_{j0} = r_{jk} y^k$, $r_{00} = r_{ij} y^i y^j$ and we have used the fact that $D^i_{jk} y^k = ^c D^i_{jk} y^k = D^i_j$ (Mosmoto,1986)

Next, we deal with $\left.\partial\right._{j}L_{i}^{*}-L_{ir}^{*}G\right._{j}^{*r}-L_{r}^{*}F_{ij}^{*r}=0$, then

$$\partial_{j}L_{i}^{*} - L_{ir}^{*}(G_{j}^{r} + D_{j}^{r}) - L_{r}^{*}(F_{ij}^{r} + {}^{c}D_{ij}^{r}) = 0. -$$
(3.6)

Putting the values of $\partial_j L_i^*$, L_{ir}^* and L_r^* from (3.4) in (3.6), using equation $L_{ij}^* = \partial_j L_i - L_{ir} G_j^r - L_r F_{ij}^r = 0$ and rearranging the terms, we get

$$\begin{split} b_{i|j} = & \left\{ \left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{ir} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_r L_i - \frac{\beta e^{\sigma}}{\overline{L}^2} (L_i b_r + L_r b_i) + \frac{1}{\overline{L}} b_i b_r \right\} D_j^r \\ & + \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_i - \frac{1}{\overline{L}} b_i \right\} (r_{j0} + s_{j0}) + \left[\left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_r + b_r \right]^c D_{ij}^r \\ & - \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_i - \frac{\beta}{\overline{L}} b_i \right] \sigma_j, \end{split}$$

which after using (2.2) gives

$$\begin{split} 2r_{ij} &= \left\{ \left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{ir} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^2} L_r L_i - \frac{\beta^2 e^{\sigma}}{\overline{L}^2} (L_i b_r + L_r b_i) + \frac{1}{\overline{L}} b_i b_r \right\} D_j^r \\ &+ \left\{ \left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{jr} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^2} L_r L_j - \frac{\beta^2 e^{\sigma}}{\overline{L}^2} (L_j b_r + L_r b_j) + \frac{1}{\overline{L}} b_j b_r \right\} D_i^r \\ &+ \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_i - \frac{1}{\overline{L}} b_i \right\} (r_{j0} + s_{j0}) + \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_j - \frac{1}{\overline{L}} b_j \right\} (r_{i0} + s_{i0}) \\ &+ 2 \left[\left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_r + b_r \right]^c D_{ij}^r - \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_i - \frac{\beta}{\overline{L}} b_i \right] \sigma_j \\ &- \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_j - \frac{\beta}{\overline{L}} b_j \right] \sigma_i \end{split}$$

and

$$\begin{split} 2s_{ij} = & \left\{ \left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{ir} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^2} L_r L_i - \frac{\beta^2 e^{\sigma}}{\overline{L}^2} (L_i b_r + L_r b_i) + \frac{1}{\overline{L}} b_i b_r \right\} D_j^r \\ + & \left\{ \left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{jr} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^2} L_r L_j - \frac{\beta^2 e^{\sigma}}{\overline{L}^2} (L_j b_r + L_r b_j) + \frac{1}{\overline{L}} b_j b_r \right\} D_i^r \\ + & \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_i - \frac{1}{\overline{L}} b_i \right\} (r_{j0} + s_{j0}) + \left\{ \frac{\beta e^{\sigma}}{\overline{L}^2} L_j - \frac{1}{\overline{L}} b_j \right\} (r_{i0} + s_{i0}) \\ - & \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_i - \frac{\beta}{\overline{L}} b_i \right] \sigma_j + \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_j - \frac{\beta}{\overline{L}} b_j \right] \sigma_i \,. \end{split}$$

Subtracting (3.7) from (3.5) and contracting the resulting equation by y^{i} , we obtain

$$2\left\{-\left(1-\frac{\beta}{\overline{L}}\right)e^{\sigma}L_{jr}-\frac{\beta^{2}e^{2\sigma}}{\overline{L}^{3}}L_{r}L_{j}+\frac{\beta e^{\sigma}}{\overline{L}^{2}}(L_{j}b_{r}+L_{r}b_{j})-\frac{1}{\overline{L}}b_{j}b_{r}\right\}D^{r}$$

$$+\left\{\frac{1}{\overline{L}}b_{j}-\frac{\beta e^{\sigma}}{\overline{L}^{2}}L_{j}\right\}r_{00}+2r_{j0}=2\left\{\left(1-\frac{\beta}{\overline{L}}\right)e^{\sigma}L_{r}+b_{r}\right\}D^{r}_{j}-(\overline{L}-\beta)\sigma_{j}.$$

$$(3.9)$$

Contracting (3.9) by y^i , we get

$$2(\overline{L} - \beta)e^{\sigma}L_{r}D^{r} + 2\overline{L}b_{r}D^{r} = \overline{L}r_{00} + \frac{1}{2}\overline{L}(\overline{L} - \beta)\sigma_{0}. \tag{3.10}$$

Subtracting (3.8) from (3.5) and contracting the resulting equation by y^{j} , we get

$$\left[\left(1 - \frac{\beta}{\overline{L}} \right) e^{\sigma} L_{ir} + \frac{\beta^2 e^{2\sigma}}{\overline{L}^3} L_i L_r - \frac{\beta e^{\sigma}}{\overline{L}^2} (L_i b_r + L_r b_i) + \frac{1}{\overline{L}} b_i b_r \right] D^r \\
= s_{i0} + \frac{1}{2} \left(\frac{1}{\overline{L}} b_i - \frac{\beta e^{\sigma}}{\overline{L}^2} L_i \right) r_{00} + \frac{1}{2} \left[\left(1 - \frac{\beta}{\overline{L}} + \frac{\beta^2}{\overline{L}^2} \right) e^{\sigma} L_i - \frac{\beta}{\overline{L}} b_i \right] \sigma_0 - \frac{1}{2} (\overline{L} - \beta) \sigma_i.$$
(3.11)

In view of $LL_{ir} = g_{ir} - L_iL_r$, the equation (3.1) can be written as

$$\frac{\overline{L} - \beta}{\overline{L}^2} e^{2\sigma} g_{ir} D^r + \left\{ \frac{(\beta^2 + \beta \overline{L} - \overline{L}^2) e^{2\sigma}}{\overline{L}^3} L_i - \frac{\beta e^{\sigma}}{\overline{L}^2} b_i \right\} L_r D^r \\
+ \left(\frac{1}{\overline{L}} b_i - \frac{\beta e^{\sigma}}{\overline{L}^2} L_i \right) b_r D^r = s_{i0} + \frac{1}{2} \left(\frac{1}{\overline{L}} b_i - \frac{\beta e^{\sigma}}{\overline{L}^2} L_i \right) r_{00} \tag{3.12}$$

$$+\frac{1}{2}\Biggl[\Biggl(1-\frac{\beta}{\overline{L}}+\frac{\beta^2}{\overline{L}^2}\Biggr)e^{\sigma}L_i-\frac{\beta}{\overline{L}}\,b_i\,\Biggr]\sigma_0-\frac{1}{2}\,(\overline{L}-\beta)\sigma_i\,.$$

Contracting (3.12) by $b^{i} = g^{ij}b_{i}$, we get

$$\begin{split} &-2\overline{L}tb_{r}D^{r}+2\beta e^{\sigma}tL_{r}D^{r}=2\overline{L}^{4}s_{0}+\overline{L}(b^{2}\overline{L}^{2}-\beta^{2}e^{2\sigma})r_{00}\\ &+\beta\overline{L}[\overline{L}^{2}(e^{2\sigma}-b^{2})-\beta e^{2\sigma}(\overline{L}-\beta)]\sigma_{0}-\overline{L}^{4}(\overline{L}-\beta)\sigma_{b} \end{split} \tag{3.13}$$

where $t = \beta(\beta + \overline{L})e^{2\sigma} - \overline{L}^2(e^{2\sigma} + b^2)$, $s_0 = s_{r0}b^r$ and $\sigma_i b^i = \sigma_b$.

The equation (3.10) and (3.13) constitute the system of algebraic equations in L_rD^r and D^r whose solution is given by

$$L_{r}D^{r} = \frac{1}{2te^{\sigma}}.A\tag{3.14}$$

and

$$b_{r}D^{r} = \frac{-(\overline{L} - \beta)A}{2\overline{L}t} + \frac{1}{2}r_{00} + \frac{(\overline{L} - \beta)\sigma_{0}}{4}$$

$$(3.15)$$

where

$$A = 2\overline{L}^3 s_0 - e^{2\sigma} \overline{L} (\overline{L} - \beta) r_{00} - \overline{L}^3 (\overline{L} - \beta) \sigma_b$$

$$+\beta\,\{\overline{L}^3(e^{2\sigma}-b^2)-\beta e^{2\sigma}(\overline{L}-\beta)\}\sigma_0+\frac{1}{2}\,t(\overline{L}-\beta)\sigma_0\,.$$

Contracting (3.12) by g^{ij} and putting the values of b_rD^r and L_rD^r from (3.14) and (3.15) respectively, we get

$$\begin{split} D^{i} &= \frac{(\overline{L} - 2\beta)A}{2\overline{L}t(\overline{L} - \beta)}y^{i} + \frac{e^{-2\sigma}\overline{L}A}{2t(\overline{L} - \beta)}b^{i} + \frac{e^{-2\sigma}\overline{L}^{2}}{(\overline{L} - \beta)}s_{0}^{i} - \frac{e^{-2\sigma}\overline{L}^{2}\sigma^{i}}{2} \\ &+ \frac{1}{4\overline{L}(\overline{L} - \beta)}\{(2\overline{L}^{2} - \beta\overline{L} + \beta^{2})y^{i} - \overline{L}^{2}(\overline{L} + \beta)e^{-2\sigma}b^{i}\}\sigma_{0}\,, \end{split} \tag{3.16}$$

where $l^i = \frac{y^i}{L}$.

Proposition (3.1). The difference tensor $D^i = G^{*i} - G^i$ of exponential change of Finsler metric is given by (3.16).

4. Projective Change of Finsler Metric

The Finsler space F^{*n} is said to be projective to Finsler space F^n if every geodesic of F^n is transformed to a geodesic of F^{*n} . It is well known that the change $L \to L^*$ is projective if $G^{*i} = G^i + P(x,y)y^i$, where P(x,y) is a homogeneous scalar function of degree one in y^i , called projective factor (Matsumoto, 1992).

Thus from (3.2) it follows that $L \to L^*$ is projective if $D^i = Py^i$. Now we consider that the conformal exponential change $L \to L^* = \overline{L} e^{\beta/\overline{L}}$ is projective.

Then from equation (3.16), we have

$$\begin{split} Py^{i} &= \frac{(\overline{L} - 2\beta)A}{2\overline{L}t(\overline{L} - \beta)}y^{i} + \frac{e^{-2\sigma}\overline{L}A}{2t(\overline{L} - \beta)}b^{i} + \frac{e^{-2\sigma}\overline{L}^{2}s_{0}^{i}}{(\overline{L} - \beta)} - \frac{e^{-2\sigma}\overline{L}^{2}\sigma^{i}}{2} \\ &+ \frac{1}{4\overline{L}(\overline{L} - \beta)}\{(2\overline{L}^{2} - \beta\overline{L} + \beta^{2})y^{i} - \overline{L}^{2}(\overline{L} + \beta)e^{-2\sigma}b^{i}\}\sigma_{0} \,. \end{split} \tag{4.1}$$

Contracting (4.1) by $y_i (=g_{ij}y^j)$ and using the fact that $s_0^iy_i=0$ and $y^iy_i=L^2$, we get

$$P = \frac{1}{2\overline{L}t} A. (4.2)$$

Putting the value of P from (4.2) in (4.1), we get

$$\frac{\beta A}{2\overline{L}t(\overline{L}-\beta)}y^{i} = \frac{e^{-2\sigma}\overline{L}A}{2t(\overline{L}-\beta)}b^{i} + \frac{e^{-2\sigma}\overline{L}^{2}s_{0}^{i}}{(\overline{L}-\beta)} - \frac{e^{-2\sigma}\overline{L}^{2}\sigma^{i}}{2} + \frac{1}{4\overline{L}(\overline{L}-\beta)}\{(2\overline{L}^{2}-\beta\overline{L}+\beta^{2})y^{i} - \overline{L}^{2}(\overline{L}+\beta)e^{-2\sigma}b^{i}\}\sigma_{0}.$$
(4.3)

Theorem (4.1). The conformal exponential change of a Finsler space is projective if the condition (4.3) hold and the projective factor P is given by $P = \frac{A}{2\overline{L}t}$.

5. Conformal Exponential Change of Douglas Space

The Finsler space F^n is called a Douglas space if and only if $G^i y^j - G^j y^i$ is homogeneous polynomial of degree three in y^i (Park and Lee, 2001). We shall write hp(r) are the homogeneous polynomial in y^i of degree r.

If we write $B^{ij} = D^i y^j - D^j y^i$ then from (3.16), we get

$$B^{ij} = \frac{e^{-2\sigma} \overline{L} A}{2t(\overline{L} - \beta)} (b^i y^j - b^j y^i) + \frac{e^{-2\sigma} \overline{L}^2}{(\overline{L} - \beta)} (s_0^i y^j - s_0^j y^i) - \frac{e^{-2\sigma} \overline{L}^2}{2} (\sigma^i y^j - \sigma^j y^i). \tag{5.1}$$

If a Douglas space is transformed to the Douglas space by a conformal exponential change (3.1), then B^{ij} must be hp (Motsumoto, 1996) and vice-versa.

Theorem (5.1) The conformal exponential change of Douglas space is a Douglas space iff B^{ij} given by (5.1) is hp (Motsumoto, 1996).

References

- 1. Park, H.S. and I.Y. Lee (2001). The Randers Change of Finsler speces with -metrics of Douglas type, *J. Korean Math. Soc.*, 38, 503-521.
- 2. Matsumoto, M. (1994). On Finsler space with Randers metric and Special forms of important tensors, *J. Math Kyoto Univ.*, 14, 477 498.
- 3. Matsumoto, M. (1996). Foundations of Finsler geometry and special Finsler speces, Kaiseisha Press, Otsu, Japan.
- 4. Matsumoto, M.(1992). Theory of Finsler spaces with metric, Rep. Math. Phy., 31: 43-83.
- 5. Bacso, S. and M. Matsumoto (1997). On the Finsler Spaces of Douglas type. A generalization of the notion of Berwald space publ. *Math. Debrecen*, 51: 385-406.

Received on 25.01.2014 and Accepted on 27.05.2014