

Some properties of α –cosymplectic manifolds

Gajendra Singh* and Bhagwat Prasad

***Department of Mathematics**

***Department of Mathematics, S.M.M. Town PG College, Ballia-277001**

Email: bhagwatprasad2010@rediffmail.com

Abstract

The aim of the present paper is to study α –cosymplectic manifolds that satisfy certain curvature condition on \tilde{Q} –curvature tensor.

Keywords - α –cosymplectic manifolds, \tilde{Q} –curvature tensor and η –Einstien manifold.

Introduction

Let (M^n, g) be an n-dimensional Riemannian manifold. We denoted by D the covariant differentiation with respect to the Riemannian metric g . Then we have

$$R(X, Y)Z = D_X D_Y Z - D_Y D_X Z - D_{[X, Y]} Z,$$

where

$$'R(X, Y, Z, W) = g(R(X, Y)Z, W).$$

The Ricci tensor Ric of (M^n, g) be defined as

$$Ric(X, Y) = \text{trac}\{Z \rightarrow R(X, Y)Z\}.$$

Locally Ric is given by

$$Ric(X, Y) = \sum_{i=1}^n 'R(X, E_i, Y, E_i),$$

where $\{E_1, E_2, \dots, E_n\}$ is locally orthonormal frames field and X, Y, Z, W are vector fields on M , the Ricci operator Q is a tensor of type (1,1) on M^n defined by

$$g(QX, Y) = Ric(X, Y),$$

for all vector field on M^n .

Let (M^n, g) , $n > 3$, be connected Riemannian manifold of class C^∞ and D be its Riemannian connection. The Weyl conformal curvature tensor C Yano and Kon (1984) and, \tilde{Q} – curvature tensor Montica and Sah (2013) of (M^n, g) are defined as

$$\begin{aligned} C(X, Y)Z &= R(X, Y)Z - \frac{1}{n-2} [Ric(Y, Z)X - Ric(X, Z)Y \\ &\quad + g(Y, Z)QX - g(X, Z)Y] \\ &\quad + \frac{r}{(n-1)(n-2)} [g(Y, Z)QX - g(X, Z)Y], \end{aligned} \quad (1.1)$$

and

$$\tilde{Q}(X, Y)Z = R(X, Y)Z - \frac{\Psi}{(n-1)} [g(Y, Z)X - g(X, Z)Y], \quad (1.2)$$

where Ψ is arbitrary scalar function and $\Psi = \frac{r}{n}$, then \tilde{Q} – curvature tensor reduces to concircular curvature tensor Yano and Kon (1984), r is the scalar curvature tensor.

Let C be the Conformal curvature tensor of M^n . The tangent space $T_p(M^n)$ can be decomposed into the direct sum $T_p(M^n) = \phi(T_p(M^n)) \oplus L(\xi_p)$, where $L(\xi_p)$ is a 1-dimensional linear subspace of $T_p(M^n)$ generated by ξ_p , we have a map:

$$C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \rightarrow \phi(T_p(M^n)) \oplus L(\xi_p)$$

It may be natural to consider the following particular cases:

- (1) $C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \rightarrow L(\xi_p)$, that is, the projection of the image of C in $\phi(T_p(M^n))$ is zero.
- (2) $C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \rightarrow \phi(T_p(M^n))$ that is, the projection of the image of C in $L(\xi_p)$ is zero.
- (3) $C: T_p(M^n) \times T_p(M^n) \times \phi(T_p(M^n)) \rightarrow L(\xi_p)$ i.e, when C is restricted to $T_p(M^n) \times T_p(M^n) \times \phi(T_p(M^n)) \times \phi(T_p(M^n))$, the projection of the image of C in $\phi(T_p(M^n))$ is zero. This condition is equivalent to Cabrerizo et al (1999),

$$\phi^2 C(\phi X, \phi Y) \phi Z = 0 \text{ if only if}$$

$$g(C(\phi X, \phi Y)\phi Z, \phi W) = 0. \quad (1.3)$$

A differentiable (M^n, g) , $n > 3$, satisfying the condition (1.3) is called ϕ –Conformally flat manifold studied by many authors such as Zhen (1992), Zhen et al (1997), Özgür (2003) and Öztürk (2013) in K-contact manifold, LP-Sasakian manifold and α –cosymplectic manifolds.

In this section, after introduction and preliminaries, in section3, it is show that α –cosymplectic manifold be constant curvature such that $\alpha \neq 0$. A necessary and sufficient condition for ξ – \tilde{Q} -flat manifold is to obtained in section 4. In final section it is proved that ϕ – \tilde{Q} flat manifold is an η –Einstein manifold.

2. Preliminaries

Let M^n be an dimensional differentiable manifold with a triplet (ϕ, ξ, η) where ϕ is (1,1)-tensor field, ξ is a vector field, η is a 1-form on M^n such that

$$\eta(\xi) = 1, \quad \phi^2 X = -X + \eta(X)\xi, \quad (2.1)$$

Which implies

$$\phi\xi = 0, \quad \eta\phi = 0 \text{ or } \text{rank } \phi = (n - 1) \quad (2.2)$$

If M^n admits a Riemannian metric g such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X), \quad (2.3)$$

Then M^n is said to be admit almost contact structure (ϕ, ξ, η, g) . On such a manifold, the fundamental 2-form Φ is defined by $\Phi(X, Y) = g(\phi X, Y)$, $\forall X, Y \in TM$.

An almost contact metric manifold (M, ϕ, ξ, η, g) is said to be almost cosymplectic if $d\eta = 0$ and $d\Phi = 0$, where d is the exterior differential operator. The product of almost Kählerian manifolds and real line \mathbb{R} or the S^1 circle are the simplest examples of almost cosymplectic manifolds (M, ϕ, ξ, η, g) is said to be normal if the Nijenhuis tensor

$$N(X, Y) = [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y] + \phi^2[X, Y] + 2d\eta(X, Y)\xi,$$

vanishes for any vector fields X and Y . A normal almost cosymplectic manifold is called cosymplectic manifold. It is well known that an almost contact metric structure is cosymplectic if and only if both $d\eta$ and $d\Phi$ vanish. An almost contact metric manifold M^n is said to be almost α –Kenmotsu manifold if $d\eta = 0$ and $d\Phi = 2\alpha\eta\wedge\Phi$, α being a non-zero real constant. It may be noted that almost α –Kenmotsu

structures are related to some special local Conformal deformation of almost cosymplectic structures.

In order to treat these two classes in a unified way, we have a new notion of an almost α –cosymplectic manifold for every any real number α that is defined as $d\eta = 0$ and $d\Phi = 2\alpha\eta \wedge \Phi$.

A normal almost α –cosymplectic manifold is called an α –cosymplectic manifold. An α –cosymplectic manifold is either cosymplectic under the condition $\alpha = 0$ or α –Kenmotsu under the condition $\alpha \neq 0$ for $\in \mathbb{R}$. on such an α –cosymplectic manifold, we have

$$(D_X\phi)(Y) = \alpha[g(\phi X, Y)\xi + \eta(Y)\phi X], \quad (2.4)$$

for $\alpha \in \mathbb{R}$ on M^n .

In α –cosymplectic manifold, the following relation holds:

$$R(X, Y)\xi = \alpha^2[\eta(X)Y - \eta(Y)X], \quad (2.5)$$

$$R(\xi, X)Y = \alpha^2[\eta(Y)X - g(X, Y)\xi], \quad (2.6)$$

$$D_X\xi = -\alpha\phi X, \quad (2.7)$$

$$R(\xi, X)\xi = \alpha^2[X - \eta(X)\xi], \quad (2.8)$$

$$g(R(\xi, X)Y, \xi) = \alpha^2[\eta(X)\eta(Y) - g(X, Y)], \quad (2.9)$$

$$Ric(X, \xi) = -\alpha^2(n - 1)\eta(X), \quad (2.10)$$

$$Ric(\phi X, \phi Y) = Ric(X, Y) + \alpha^2(n - 1)\eta(X)\eta(Y), \quad (2.11)$$

$$Q\xi = -\alpha^2(n - 1)\xi, \quad (2.12)$$

$$Ric(\xi, \xi) = -\alpha^2(n - 1), \quad (2.13)$$

for any vector fields X and Y and $\alpha \in \mathbb{R}$.

Kenmotsu manifolds have been studied by another Jun, De and Pathak (2005) and he obtained the above results for $\alpha = 1$.

An α –cosymplectic manifold M^n is said to be Einstein manifold if its Ricci tensor Ric is of the form

$$Ric(X, Y) = \lambda g(X, Y), \quad (2.14)$$

where λ is constant and it is η -Einstein manifold if its Ricci tensor Ric is of the form

$$Ric(X, Y) = \lambda_1 g(X, Y) + \lambda_2 \eta(X)\eta(Y), \quad (2.15)$$

for any vector fields X and Y , where λ_1 and λ_2 are function on M^n .

3. \tilde{Q} – curvature tensor α – cosymplectic manifold.

Let us consider α – cosymplectic manifold satisfying the following condition

$$\tilde{Q}(X, Y)Z = 0. \quad (3.1)$$

Then from (1.2) and (3.1), we get

$$R(X, Y)Z = \frac{\Psi}{(n-1)}[g(Y, Z)X - g(X, Z)Y], \quad (3.2)$$

Putting ξ for Z in (3.2) and using (2.3) and (2.5), we get

$$\alpha^2[\eta(X)Y - \eta(Y)X] = \frac{\Psi}{(n-1)}[\eta(Y)X - \eta(X)Y]. \quad (3.3)$$

From (3.3), we get

$$[\eta(X)Y - \eta(Y)X][(n-1)\alpha^2 + \Psi] = 0. \quad (3.4)$$

Putting ξ for X in (3.4), we get

$$(\phi^2 Y)[(n-1)\alpha^2 + \Psi] = 0. \quad (3.5)$$

Hence from (3.5), we see that

Either $\phi^2 Y = 0$ or $[(n-1)\alpha^2 + \Psi] = 0$.

$$\text{But } \phi^2 Y \neq 0. \text{ Hence } (n-1)\alpha^2 + \Psi = 0, \alpha \neq 0. \quad (3.6)$$

Hence from (3.2) and (3.6), we get

$$R(X, Y)Z = \alpha^2[(g(Y, Z)X - g(X, Z)Y)]. \quad (3.7)$$

From (3.7), we can state the following theorem:

Theorem (3.1). Let M^n be an α – cosymplectic manifold if the manifold M^n is \tilde{Q} -flat then M^n is a manifold of constant curvature such that $\alpha \neq 0$.

Definition (3.1). A α – cosymplectic manifold is said to be ξ – \tilde{Q} -flat De and Biswas (2006) if

$$\tilde{Q}(X, Y)\xi = 0. \quad (3.8)$$

Putting ξ for Z in (1.2), we get

$$\tilde{Q}(X, Y)\xi = R(X, Y)\xi - \frac{\Psi}{(n-1)}[g(Y, \xi)X - g(X, \xi)Y]. \quad (3.9)$$

From (2.5) and (3.9), we get

$$\tilde{Q}(X, Y)\xi = \left(\alpha^2 + \frac{\Psi}{(n-1)}\right)[\eta(X)Y - \eta(Y)X]. \quad (3.10)$$

From (3.8) and (3.10), we get

$$\Psi = -(n-1)\alpha^2, \alpha \neq 0 \quad (3.11)$$

In view of (3.10) and (3.11), we get

$$\tilde{Q}(X, Y)\xi = 0.$$

Hence we state the following theorem:

Theorem (3.2). Let M^n be an α –cosymplectic manifold. Then the manifold be $\xi - \tilde{Q}$ -flat if and only if $\Psi = -(n-1)\alpha^2, \alpha \neq 0$.

4. $\phi - \tilde{Q}$ flat α – cosymplectic manifold

In this case we assume that (M^n, g) be $\phi - \tilde{Q}$ flat α – cosymplectic manifold. Then it is easy to see that

$$\phi^2 g(\tilde{Q}(\phi X, \phi Y)\phi Z, \phi W) = 0, \quad (4.1)$$

So by the use of (1.2) and (4.1), we get

$$\begin{aligned} g(R(\phi X, \phi Y)\phi Z, \phi W) &= -\frac{\Psi}{n-1} [g(\phi Y, \phi Z)g(\phi X, \phi W) - \\ &g(\phi X, \phi Z)g(\phi Y, \phi W)] \end{aligned} \quad (4.2)$$

Let $\{E_1, E_2, \dots, E_{n-1}, \xi\}$ be a local orthognormal basis of vector fields in M^n . Using the fact that $\{\phi E_1, \phi E_2, \dots, \phi E_{n-1}, \xi\}$ is also a local orthonormal basis. Putting E_i for X and W in (4.2) and sum up with respect to i , then we have

$$\begin{aligned} \sum_{i=1}^{n-1} {}'R(\phi E_i, \phi Y, \phi Z, \phi E_i) &= -\frac{\Psi}{n-1} \sum_{i=1}^{n-1} [g(\phi Y, \phi Z)g(\phi e_i, \phi e_i) \\ &- g(\phi e_i, \phi Z)g(\phi Y, \phi e_i)] \end{aligned} \quad (4.3)$$

It can be verify that Öztürk (2013)

$$\sum_{i=1}^{n-1} {}'R(\phi E_i, \phi Y, \phi Z, \phi E_i) = Ric(\phi Y, \phi Z) + \alpha^2 g(\phi Y, \phi Z), \quad (4.4)$$

and

$$\sum_{i=1}^{n-1} g(\phi e_i, \phi Z)g(\phi Y, \phi e_i) = g(\phi Y, \phi Z). \quad (4.5)$$

Therefore, in view of (4.3), (4.4) and (4.5), we get

$$Ric(\phi Y, \phi Z) = \left(\frac{\Psi}{n-1} - \alpha^2\right) g(\phi Y, \phi Z). \quad (4.6)$$

By making the use of (2.3), (2.11) and (4.6), we get

$$Ric(Y, Z) = \left[\frac{\Psi}{n-1} - \alpha^2 \right] g(Y, Z) - \left[\frac{\Psi}{n-1} + \alpha^2(n-2) \right] \eta(Y)\eta(Z). \quad (5.6)$$

which show that M^n is an η –Einstein manifold by virtue of (2.15). Hence we have the following theorem:

Theorem (4.1). Let M^n be an n-dimensional ($n > 3$), $\phi - \tilde{Q}$ flat α – cosymplectic manifold. Then M^n is an η –Einstein manifold where $\lambda_1 = \frac{\Psi}{n-1} - \alpha^2$ and $\lambda_2 = \frac{\Psi}{n-1} + \alpha^2(n-2)$.

References

1. Cabrerizo, J.L., Fernandez, L.M., Fernandez, M. and Zhen, G. (1999). The structure of a class of k-contact manifolds, *Acta Math. Hungar.*, 82(4): 331-340.
2. De, U.C. and Biswas S. (2006). A note on ξ –conformally flat contact manifolds, *Bull. Malays. Math. Sci. Soc.* 29(1): 51-57.
3. Jun, J. B., De, U. C. and Pathak, G. (2005). On Kenmotsu manifold, *J. Korean Math. Soc.*, 42: 435 – 445.
4. Mantica, C.A. and Suh, Y.J. (2013). Pseudo Ω –symmetric Riemannian manifolds, *Int. J. Geom. Methods Mod. Phys.* 10(5):
5. Özgür, C. (2003). ϕ -Conformally flat LP-Sasakian manifold, *Rad. Mat.* 12(1): 99 – 106.
6. Öztürk, H. (2013). Some curvature conditions on α – cosymplectic manifolds, *mathematics and Statistics* 1(4): 188-195.
7. Yano, K. and Kon, M. (1984). Structures on Manifolds, Series in Pure Math, vol 3, world scientific.
8. Zhen, G. (1992). On conformal symmetric K-contact manifolds, *Chinese Quart. J. Math.* 7: 5-10.
9. Zhen, G., Carbrerizo, J.L., Fernandez, L.M. and Fernandez, M. (1997). On ξ -Conformally flat contact metric manifolds, *Indian J. pure Appl. Math.* 28, no.6: 725-734.

Received on 28.08.2019 and accepted on 23.12.2019