JOURNAL OF PROGRESSIVE SCIENCE, VOL 9, NO.1 &2, 2018
A Peer-reviewed Research Journal

ISSN:0976-4933
Journal of Progressive Science
Vo0l.09, No.01 & 02, pp 15-23 (2018)

Quarter-symmetric non-metric connection in LP-cosymplectic manifold
Niraj Kumar Gupta and *Bhagwat Prasad

*Department of Mathematics, DDU Govt. Degree College, Saidpur, Ghazipur
*Department of Mathematics
S. M. M. Town P.G. College, Ballia, (UP), India

Corresponding author Email: niraj.gdc(@gmail.com
Email: bhagwatprasad2010@rediffmail.com

Abstract
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connection on a LP-cosymplectic manifold.
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Introduction
In 1975, Golab defined and studied quarter-symmetric connection in a differentiable
manifold with affine connection. A linear connection on an n-dimensional Riemannian
manifold (M", g) is called a quarter symmetric connection if its torsion tensor T satisfies
TX,Y) = n(Y)¢X — n(X)¢Y, (1.1)
where 1 is a 1-form and ¢ is a (1, 1) tensor field. In particular, if ¢X = X, then the
quarter-symmetric connection reduces to the semi-symmetric connection Friedmann and
Schouten (1924). Thus the notion of the quarter-symmetric connection generalizes the
notion of the semi-symmetric connection.
If moreover, a quarter-symmetric connection D satisfies the condition
(Dxg) (Y,2) %0, (1.2)
then D is said to be a quarter-symmetric non-metric connection.
After Golab (1975) and Rastogi (1978 and 1987) continued systematic study of quarter-
symmetric metric connection by Mishra and Pandey (1980), Yano and Imai (1982), Roy,
Barua and Mukhopadhyay (1991), De, Ozgiir and Sular (2008), Barman (2012) and
others.
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The study of the quarter-symmetric non-metric connection in a LP-cosymplectic
manifold. Section 2 is devoted tothe preliminaries. In section 3 and 4 we define and prove
the existence of quarter symmetric non-metric connection in a LP-cosymplectic manifold.
In section 5, we find the expression for the curvature tensor, Ricci tensor and scalar
curvature with respect to the quarter-symmetric non-metric connection and investigate
relation between curvature tensor, Ricci tensor and scalar curvature with respect to Levi-
Civita of connection. In section 6 special curvature tensor of quarter-symmetric non-
metric connection is studied. In final section it is shown that the quasi-concircular
curvature tensor of the quarter-symmetric non metric connection is equal to the quasi-
concircular curvature tensor of LP-cosymplectic manifold under certain condition.

1. Preliminaries

Let (M", g) be an n-dimensional differentiable manifold on which there are
defined a tensor field ¢ of type (1, 1), a contravariant vector field &, a covariant vector
field n and Lorentzian metric g which satisfy

$°X = X + n(X)& n(© = -1, 2.1
and

g(0X,0Y) = g(X,Y) + n(Mn(X); gX,8) = n(X), (2.2)
then (M", g) is called a Lorentzian para-contact manifold (LP-contact manifold) and the
structure (¢, &, n, g) is called an LP-contact structure Matsumoto (1989). In an LP-
contact manifold, we have

@ ¢@E) =0(®) M6X) =0, (c) rank ()= (n-1). (23)
Let us put
FX,Y) = g(¢X,Y) = g(X,9Y) = F(Y,X). (2.4)

Then the tensor field F is symmetric (0, 2) tensor field.
An LP-contact manifold is said to be an LP-cosymplictic manifold if Prasad and Ojha
(1994)

Dx¢ = 0= (DxF) (Y,Z) = 0. (2.5)
On this manifold, we have
(Dxn) (Y) = 0and Dy& = 0, (2.6)

for vector fields X, Y and Z, where D denotes the covariant differentiation with respect to
g.
2. Quarter-symmetric non metric connection in an LP-cosymplectic manifold :

Let (M", g) be an LP-cosymplectic manifold with Levi-Civita connection D. we
define a linear connection D on M" by

DxY = DxY + a.n(Y) ¢X + b.n(X) ¢Y. (3.1)

where a and b non zero constants and n is 1-form associated with the vector field & on M"
given by
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gX,8) = n(X), (3.2)
for all vector fields Xey(M"), where Xey (M") is the set of all differentiable vector
fields on M". Using (3.1), the torsion tensor T of M" with respect to the connection D is
given by

T(X,Y) = (a-b) n(Y) ¢X — n(X) ¢Y]. 3.3)
called a quarter-symmetric.

A linear connection satisfying (3.3) is quarter-symmetric connection. Further using (3.1),
we get

(Dxg) (Y,Z) = —aln(Ng9X,2) + n(D)g(dX, )] - 2bn(X) g(¢Y,Z) 0.  (3.4)
A linear connection D defined by (3.1) satisfies (3.3) and (3.4) is called a quarter-
symmetric non-metric connection.

Conversely, we will show that a linear connection D defined on M" satisfying
(3.3) and (3.4) is given by (3.1).

Let D be a linear connection in M" given by

DxY = DyxY + H(X,Y). (3.5)
Now, we shall determine the tensor field H of the type (1, 2) such that D satisfies (3.3)
and (3.4).
From (3.5), we have

T(X, Y) = H(X,Y) - H(Y,X). (3.6)
Denote

G(X,Y,Z) & (Dxg)(Y, Z).
(3.7)
From (3.5) and (3.7), we get

g(H(X,Y),Z) + g(HXX,Z2),Y) = —G(X Y, Z). (3.8)

In view of (3.5), (3.6), (3.8) and (3.4), we get
g(T(X,Y),2) + g(T(Z,X),Y) + g(T(Z,Y),X = g(HX,Y),Z) - g(H(Y,X),Z) +
= g(TX,Y),2) + g(T(ZX),Y) + g(T(ZY),X) =
2g(H(X,Y),Z)- 2an(2)g(¢X,Y) - 2bn(X)g(¢Y,Z) - 2bg(¢X, Z)n(Y)
+ 2bn(Z) g(vX, Y).
= HX)Y) = %{T(X,Y) + 'T(X,Y) + 'T(Y,X)} + bn(X) oY + bn(Y) ¢X +
where 'T be a tensor field of the type (1, 2) defined by g('T(X,Y),Z) = g(T(Z,X),Y).
This implies that H(X,Y) = an(Y)¢oX + bn(X)¢Y.
Hence from (3.5), we have
DyY = DxY + an(Y)oX + bn(X)oY.
Hence, we can state the following theorem:
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Theorem (3.1): Let (M", g) be an LP-cosymplectic manifold with Lorentzian para

contact metric structure (¢, &, 1, g) admitting a quarter-symmetric non-metric connection

D which satisfies (3.3) and (3.4). Then the quarter-symmetric non-metric is given by

(3.1).

3. Existence of a quarter-symmetric non metric connection D on LP-cosymplectic
manifold :

Let X, Y and Z be any three rector fields on LP-cosymplectic manifold with LP-
contact metric structure (¢, &, 1, g). We define Koszul formula for D Koszul (1950) as
2g(DxY,Z) = Xg(Y,Z) + Yg(Z,X) - ZXY) +g((X,V),Z2)- g((¥,2),X) + g((ZX),Y). 4.1)
Analogous to this definition, we define a connection D by the following equation:

2g(DxY,Z) = Xg(Y,Z) + Yg(Z,X)- Z(X,Y) + g((X,Y),Z) - g((Y,Z),X) +

g((Z.X),Y) + gan(M)¢X — an(X)¢Y + bn(X)¢Y —
bn(Y)¢X,Z) + g@an(2)¢Y + bn(Y) ¢Z — an(V)¢Z —
bn(2)¢Y,X) + gan(X)¢Z + bn(Z)¢X — an(Z) ¢X —
bn(X) ¢Z,Y), (4.2)
which holds for all vector fields X, Y and Z ey(M"). It can be easily verified that the
mapping D : (X,Y) = (DxY),
satisfies the following equalities:

EX(Y + 7)) = EXY + (BXZ), 4.3)

Dx.yZ = DxZ + DyZ, 4.4)

DyeY = fDyY, (4.5)
and

Dx(fY) = fDxY + (XD Y, (4.6)

for all X, Y, Z ex(M") and for all feF(M"), the set of all differentiable mapping over M".
From (4.3), (4.4), (4.5) and (4.6), we can conclude that D determines a linear connection
on M".

Now from (4.2), we get

2g(DxY,Z) - 2g(DYX, Z) = 2g((X,Y),Z) +
2an(Y) g(¢X,Z) - 2an(X)g(¢Y,2) +

2bn(X)g(9Y,Z) - 2bn(Y)g(¢X, Z).
Hence

TX,Y) = (a- b) M(V)¢X — n(X)oY]. (4.7)
Also we have from (4.1),

28(DxY,Z) - 2g(DxZ,Z) = 2Xg(Y,Z) +
2an(Y) g(0X,Z) + 2an(Z)g(9X,Y) +
4bn(X)g(¢Y, Z).
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That is,
(Dx®)(Y,2) = —an(V)g(¢X,Z) — an(Z)g(eX,Y) - 2bn(X)g(4Y, 2). (4.8)
From (4.7) and (4.8) it follows that D determines a quarter-symmetric non-metric
connection on (M", g). This show that D determines a unique quarter-symmetric non-
metric connection on (M", g).
Hence we can state the following theorem:
Theorem (4.1). Let (M", g) be a LP-cosymplectic manifold with a LP-contact metric
structure (¢, &, 1, g) on it. Then there exist a unique linear connection D satisfying (3.3)
and (3.4).
4. Curvature tensor of an LP-cosymlectic manifold with respect to the quarter-
symmetric non-metric connection D :
Let R and R be the curvature tensor of the connection D and D respectively then
we get
R(X,Y)Z = DyDyZ — DyDxZ — Dixy;Z. (5.1)
From (3.1) and (5.1), we get
R(X,Y)Z = Dy(DyZ + a.n(Z)¢Y + bn(Y)$Z) — Dy(DxZ + a.n(Z)opX +
b(X)9Z) -~ DixyZ - a. (@K, Y] — bn([X, YoZ,
which gives on simplification
RX,Y)Z =
R Y)Z + a[(Dxm)(Z)9Y - (Dyn)(Z)oX] +
(@[ Oxp)Y - Oyh)X] + b[(Dx)(V)¢Z - (Dym)(X)¢Z +
n(Y) (Dx4) (2) - (Dyn) X) $Z + n(Y)(Dx$)(Z) —
NX)(Dyd)(Z) + ab[n(NINWZ)PX — nXIM(PZ)Y +
NON@DP’Y = n@MM°X] + a?m@nOYIX —
@ eX) (eY)]. (5.2)
In view of (2.3), (2.5), (2.6) and (5.2), we get
RX,Y)Z = RX,Y)Z - ab[n(X)M(2)Y — n(Nn(D)X], (5.3)
where R(X,Y)Z = DxDyZ-DyDxZ - Dixvy|Z,
is the curvature tensor of D with respect to the Riemannian connection D.
Contracting (5.3) with respect to X, we get
Ric(Y,Z) = Ric(Y,Z) - ab(n- 1)n(Y)n(Z), (5.4)
where Ric(Y, Z) and Ric(Y, Z) are the Ricci tensor with respect to D and D
and
r=r + ab(n— 1), (5.5)
where T and r are the scalar curvature with respect to D and D.
Taking the inner product of (5.3) with W, it follows that
RXY,ZW) = RX,Y,Z,W) - ab[n(X)n(@)g(Y, W) — n(¥)n(@D)gX W), (5.6)
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where
R(X,Y,Z,W) = g(RXX,Y)Z,W}and 'R(X,Y,Z, W) = g(R(X,Y)Z,W).
From (5.6), we get
R(X,Y,Z,W) + 'R(Y,X,Z,W) = 0,
RXY,Z,W) + RXY,W,Z) = abln(Y)n(Z)g(X, W) — n(X)n(Z)g(Y, W) +

n(nW)gX, 2)] + nX) n(W) g(¥, 2)], (5.7)

RXY,Z,W) — 'R(ZW,XY) = abln(YIn(Z)g(X, W) — nIm(W)g(Y,2)],  (5.8)

'R(X,Y,Z,W) + 'R(Y,Z,X,W) + 'R(ZX,Y,W) = 0. (5.9
Differentiating equation (5.3) covariantly with respect to X, we get

(DxR)(Y,Z,U) = (DxR)(Y,Z U) - ab[(Dxn)(Y)n(U)Z - (Dxn)(Z)n(Y)U] (5.10)
From (2.6) and (5.10), we get

(D4R)(Y,Z,U) = (DxR)(Y,Z,U). (5.11)
From (5.4), we get

Ric(Y,Z) = Ric (Z,Y). (5.12)

From the above discussion, we have the following theorem
Theorem (5.1). For an LP-cosymplectic manifold (M", g) with respect to the quarter-
symmetric non-metric connection D, we have
(i)  The curvature tensor R is given by (5.3);
(ii))  The Ricci tensor Ric is given by (5.4);
(iii))  The scalar curvature T is given by (5.5);
(iv) 'RXY,ZW) + R(Y,X,Z W) = 0;
)  RKY,ZW) + 'RXY,W,Z) = ab[n(Y)n(Z)gX, W) — n(X)n(D)g(Y, W) +
n(nW)gX,Z) = n(XmW)g(Y,2)].
(vi) 'E(X;Y, Z,W) — ’E(Z,W, XY) = a_b[n(Y)n(Z)g(X. W) = nX)n(W)g(Y,2)],
(vii) 'RXY,ZW) + 'R(Y,Z,X,W) + 'R(Z X,Y,W) = 0 i.e. Bianchci first identity;
(viii) (DxR)(Y,Z,U) + (DyR)(Z, X,U) + (DzR)(X,Y,U) = 0 i.e. Bianchci second identity;
(ix) The Ricci tensor Ric(Y, Z) is symmetric.
5. Special curvature tensor of an LP-cosymplectic manifold with respect to
quarter-symmetric non-metric connection D.
Special curvature tensor J on a Riemannian manifold (M", g) of the type (0, 4)
defined by Singh and Khan (1998) as follows.
TX,Y,Z, W) = 'R(X,Y,ZW) + 'R(X,Z, Y, W).
(6.1)
Or equivalently
gJXVZW) = g(RX Y)Z W) + g(R(X,2)Y,W).
It is obvious that
TXY,Z,W) — "J(X,Z,Y,W) = 0, (6.2)
and
TXY,Z,W) + 'J(Y,Z,X, W) + 'J(Z,X,Y,W) = 0. (6.3)
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Analogous to the definition of (6.1), we define special curvature tensor of M" with
respect to quarter-symmetric non-metric connection D in an LP-cosymplectic manifold
by the expression
TX,Y)Z = RX,Y)Z + R(X,2) Y. (6.4)
In view of (5.3), (6.1) and (6.4), we get
JXY)Z = JXY)Z — abmXM(Z) Y + nEMMNZ — 2n(n(DX]. (6.5)
From (6.2) and (6.5), we get
JX,YZ - JX,Z)Y = 0.
Again from (6.5), we get
JIXKY)Z + J(Y,2)X + J(Z,X)Y = 0. (6.6)
Thus, we have the following theorem:
Theorem (6.1): The special curvature tensor of an LP-cosymplectic manifold with
respect to D satisfies the relation
(i) JXYVZ - JX2DY = 0;
M JXYZ + JY,2)X + J(Z,X)Y = 0.
6. Quasi-concircular curvature tensor V with respect to quarter-symmetric non-
metric connection D in a LP-Cosymplectic manifold.
The notion of quasi-concircular curvature tensor V was introduced by Prasad and
Mrurya (2007). They defined quasi concircular curvature tensor by

VX Y)Z = ARXY)Z + == + 2B| [g(Y, 2)X - g(X, 2)Y], (7.1)
where A and B an constants such that A #0, B=# 0. f A=1and B =— ﬁ then (7.1)

takes the form
VX,Y)Z = RXY)Z —

r
n(n-1)
where V is the concircular curvature tensor Mishra (1984). Hence the concircular

[V, DX - gXDY] = VX, V)Z,

curvature tensor V is a particular case of the tensor V for these reason V is called quasi
concircular curvature tensor. It can be easily verified that
VXY, Z,W) + 'V(Y,X,Z, W) = 0,
VXY, ZW) + VX, Y,W,Z) = 0,
VXY, Z,W) — 'V(Z,W,X,Y) = 0, and (7.2)
VXY, Z,W) + VY, Z,X,W) + 'V(ZX Y, W) = 0,
where g(V(X,Y)Z, W) = 'V(X,Y,Z W).
Quasi concircular curvature tensor V with respect to quarter-symmetric non-metric
connection D in an LP-cosymplectic is defined by

VX Y)Z = ARXY) Z = -|-= + 2B|[g(v, )X - g(X, 2)Y]. (7.3)

where g(V(X,Y)Z,W) = V(X,Y,Z W).
In view of (5.3), (5.5), (7.1) and (7.3), we get
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VXY Z = V(X Y) Z- ab [{An(XOn(2) + 22222
A+2 (n—-1)

g(x,2) }Y - {An(n@) +
2y, Z)} X]. (7.4)

From (7.4), we can state the following theorem

Theorem (7.1): The quasi concircular tensor of an LP-cosymplectic manifold with
respect to the quarter-symmetric non-metric connection Dand Levi-Civita connection D
is equal if and only if

{AnCom@ + 2202 g, 0} v = {An(n@) + FEE2 g(v2)}X
provided A,B=0.
This proves the theorem.

Let Ric(Y,Z) = 0 =F = 0. (7.5)
Then from (7.3) and (7.5), we get

VX,Y)Z = ARX,Y) Z. (7.6)
Hence in view of (7.4) and (7.6), we get

AR Y)Z = V(X Y)Z- ab [{A n(ON(2) + 220D g(x,2) }Y -

A+2B
{Ann@ + AZBOD gy, Z)} x|. (7.7)

Here in view of (7.7), we have the following theorem.

Theorem (7.2): If the curvature tensor R of the quarter-symmetrci non-metric connection
D in an LP-cosymplectic manifold varishes, then the manifold is quasi concircully flat if
and only if

{Aneom@ +
Now equation (7.4) can be put as
VXY, Z,W) =
V(X,Y,Z W) - ab [{A. nCON(Z) +

AZBOD g%, D)} 8, W)- {An(Mn(@) +
Y. D}gxwW)| . (7.8)

From (7.2) and (7.8), we can state the following theorem:
Theorem (7.5): The quasi concircular curvature tensor with respect to quarter-symmetric non-
metric connection D of an LP-cosymplictic manifold satisfies the following algebraic properties:
VXY, Z,W) + V(Y,X,Z,W) =
VXY, Z,W) + V(X,Y,W,Z) = ab[A{n(Y)n(@)gX, W) — n(n(D)g(Y, W) —
nEmW)g(Y,2) + n(HnW)gX,2)} +
2. 2280 (Y, Z)g (X, W)- g(X, Z)g(Y, W)},
VXY, Z,W) — 'V(ZW,XY) = abAln(Y)n(2)g(X, W) — n(X)n(W)g(Y,2)],

A+2B(n 1) A+2B(n 1)

(X, Z)} {A NN + a(¥, Z)} X, ab # 0.

A+2B(n—-1)

and
VXY, Z,W) + 'V(ZW,XY) + 'V(ZXY,W) =
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