

Pseudo W_8 -flat Lorentzian lpha-para Kenmotsu manifold Subhash Chandra Singh

Department of Mathematics, Kunwar Singh Inter College, Ballia-277001, UP, India

Corresponding author Email: drsubhash4321@gmail.com

Abstract

The notion of Lorentzian α -para Kenmotsu manifold has been introduced by Prasad, Verma and Yadav (2023). In this paper we study some properties of pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold.

Keywords: Lorentzian α -para Kenmotsu manifold, Pseudo W_8 -curvature tensor, Manifold of constant curvature.

1. Introduction

Pokharial (1982) defined W_8 -curvature tensor. Further, Prasad, Yadav and Pandey (2018) generalized this concept and introduced the notion of pseudo W_8 -curvature tensor \widetilde{W}_8 (Prasad, Yadav and Pandey, 2018). Prasad, verma and Yadav (2023) defined Lorentzian α -para Kenmotsu manifold and studied some properties of it. In 1989, Matsumoto introduced the notion of LP-Sasakian manifolds. De, Shaikh and Sengupta (2002) introduced the notion of LP-Sasakian manifold with a coefficient α which generalized the notion of LP-Sasakian manifold. In 2007, Bagewadi, Prakasha and Venkatesha studied the pseudo projectively flat LP-Sasakian manifold with a coefficient α . Singh and Maurya (2022) studied quasi conformally flat LP-Sasakian manifold with a coefficient α . In this paper we study some properties of pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold. We prove that a pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold is always a η -Einstein manifold, provided α and σ are constants. Futher we prove that of $\alpha - (n-1)b \neq 0$ and scalar curvature r is constant, then a pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold is of constant curvature, provided α and σ are constants.

2. Preliminaries

An n-dimensional smooth manifold M is said to be Lorentzian almost paracontact manifold, provided M is equipped with a (1,1)-tensor field ϕ , a covariant vector field ξ , a covariant vector field η and a (0,2) type Lorentzian metric g. Let $g_m: T_m M \times T_m M \to R$ be an inner product of signature (-,+,+,....,+), here m is a point in M, $T_m M$ represents tangent space of smooth manifold M at m and R is real number space. Some basic results, given below hold:

$$\phi^{2}(X) = X + \eta(X)\xi, \quad \eta(\xi) = -1, \tag{2.1}$$

$$g(X,\xi) = \eta(X), g(\phi X, \phi Y) = g(X,Y) + \eta(X) \eta(Y),$$
 (2.2)

 $\forall X, Y \text{ on } M$, and structure (ϕ, ξ, η, g) is said to be Lorentzian almost paracontact structure. An n-dimensional smooth manifold M endowed with structure (ϕ, ξ, η, g) is said to be Lorentzian almost paracontact manifold (De, 2009, Motsumoto, 1989). Results given below hold (Motsumoto, 1989) for Lorentzian almost paracontact manifold,

$$\phi \xi = 0 , \ \eta(\phi X) = 0, \ \Omega(X, Y) = \Omega(Y, X), \tag{2.3}$$

where,

$$\Omega(X,Y) = q(X,\phi Y).$$

Definition 2.1: A Lorentzian almost paracontact manifold *M* is said to be Lorentzian para–Kenmotsu manifold, provided

$$(D_X \phi)(Y) = -g(\phi X, Y)\xi - \eta(Y) \phi X, \forall X, Y \text{ (Haseeb, 2020, 2021, Pankaj, 2021)}$$

Hence, we have the following:

Definition 2.2: A Lorentzian para–Kenmotsu manifold is said to be Lorentzian α –para Kenmotsu manifold, provided

$$(D_Z \Omega)(X,Y) + \alpha \eta(X) \Omega(Y,Z) + \alpha \eta(Y) \Omega(X,Z) = 0, \tag{2.4}$$

 $\forall X, Y \text{ on } M$, where α is a non–zero smooth function and

$$\Omega(\phi X, Y) = -\frac{1}{\alpha} (D_X \eta)(Y).$$

We defined,

$$\bar{\Omega}(X,Y) = \Omega(\phi X,Y),$$

Then, we have

$$\bar{\Omega}(X,Y) = -\frac{1}{\alpha} (D_X \eta)(Y), \tag{2.5}$$

and

$$\bar{\Omega}(X,Y) = \bar{\Omega}(Y,X),$$

where, D is covariant differential operator.

From equation (2.4), we get,

$$(D_X \phi)(Y) = -\alpha g(\phi X, Y)\xi - \alpha \eta(Y)\phi X. \tag{2.6}$$

Putting $Y = \xi$ in the above equation, we get,

$$(D_X \phi)(\xi) = -\alpha g(\phi X, \xi) \xi - \alpha \eta(\xi) \phi X.$$

Using equation (2.1) and (2.3), we obtain,

$$-\phi(D_X\,\xi)=\alpha\,\phi X.$$

Operating ϕ on both sides of the above relation and using relation (2.1), it yields

$$D_X \xi + \eta (D_X \xi) \xi = -\alpha (X + \eta(X) \xi).$$

Relation (2.1) implies η ($D_X \xi$) = 0. Using this relation in the above equation, we get

$$D_X \xi = -\alpha X - \alpha \eta(X) \xi. \tag{2.7}$$

Also,

$$(D_X \eta)(Y) = D_X \eta(Y) - \eta (D_X Y) = g(Y, D_X \xi). \tag{2.8}$$

Relation (2.7) and (2.8) together yield

$$(D_X \eta)(Y) = -(\alpha)[g(X, Y) + \eta(X)\eta(Y)]. \tag{2.9}$$

In particular, if α satisfies (2.9) together with the following relation

$$D_X \alpha = d\alpha(X) = \sigma \eta(X), \tag{2.10}$$

Then ξ is said to be concircular vector field. Here, σ is smooth function and η is 1-form.

For Lorentzian α -para Kenmotsu manifold M (ϕ , ξ , η , g), following results hold good (Kachar, 1982)

$$\eta(R(X,Y)Z) = (\alpha^2 + \sigma) [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)], \tag{2.11}$$

$$Ric(X,\xi) = (n-1)(\alpha^2 + \sigma)\eta(X), \tag{2.12}$$

$$R(X,Y)\,\xi = (\alpha^2 + \sigma)\,[\eta(Y)X - \eta(X)Y],\tag{2.13}$$

$$R(\xi, Y) X = (\alpha^2 + \sigma) \left[g(X, Y)\xi - \eta(X)Y \right], \tag{2.14}$$

$$(D_X \phi)(Y) = -\alpha g(\phi X, Y) \xi - \alpha \eta(Y) \phi X, \tag{2.15}$$

$$Ric(\phi X, \phi Y) = Ric(X, Y) + (n-1)(\alpha^2 + \sigma) \eta(X) \eta(Y). \tag{2.16}$$

The notion of pseudo W_8 -curvature tensor \widetilde{W}_8 was given by Prasad, Yadav and Pandey (2018) as follows:

$$\widetilde{W}_{8}(X,Y)Z = a R(X,Y)Z + b \left[Ric(X,Y)Z - Ric(Y,Z)X \right] - \frac{r}{n} \left[\frac{a}{n-1} - b \right] \left[g(X,Y)Z - g(Y,Z)X \right]. \quad a,b \neq 0.$$
(2.17)

If $\widetilde{W}_8(X,Y)Z = 0$ and $a - (n-1)b \neq 0$, then Ricci tensor is given by (Prasad, Yadav & Pandey, 2018)

$$Ric(Y,Z) = -\frac{r}{n}g(Y,Z).$$
 (2.18)

If = 1, $b = \frac{1}{n-1}$, then from (2.17), we get,

$$\widetilde{W}_{8}(X,Y)Z = R(X,Y)Z + \frac{1}{(n-1)} \left[Ric(X,Y)Z - Ric(Y,Z)X \right].$$

$$= W_{8} - \text{curvature tensor (Pokhariyal, 1982)}. \tag{2.19}$$

3. Pseudo \widetilde{W}_8 -flat Lorentzian α -para Kenmotsu manifold

Let us consider a Pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold. Then $\widetilde{W}_8 = 0$.

Then form (2.17), we get

$$R(X,Y)Z = \frac{b}{a} \left[Ric(Y,Z)X - Ric(X,Y)Z \right] + \frac{r}{an} \left[\frac{a}{n-1} - b \right] \left[g(X,Y)Z - g(Y,Z)X \right]. \tag{3.1}$$

Implies that,

$$'R(X,Y,Z,W) = \frac{b}{a} [Ric(Y,Z)g(X,W) - Ric(X,Y)g(Z,W)] +$$

$$\frac{r}{an} \left[\frac{a}{(n-1)} - b \right] \left[g(X,Y)g(Z,W) - g(Y,Z)g(X,W) \right]. \tag{3.2}$$

where

$$'R(X,Y,Z,W) = g(R(X,Y)Z,W).$$

Putting $W = \xi$ in (3.2) and using (2.2) and (2.11), we get

$$\eta(R(X,Y)Z) = \frac{b}{a} \left[Ric (Y,Z)\eta(X) - Ric (X,Y)\eta(Z) \right] +$$
$$\frac{r}{an} \left[\frac{a}{(n-1)} - b \right] \left[g(X,Y) \ \eta(Z) - g(Y,Z) \ \eta(X) \right].$$

This gives

$$(\alpha^{2} + \sigma)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] = \frac{b}{a}[Ric(Y,Z)\eta(X) - Ric(X,Y)\eta(Z)] + \frac{r}{a}\left[\frac{a}{(n-1)} - b\right][g(X,Y)\eta(Z) - g(Y,Z)\eta(X)].$$
(3.3)

Putting $\xi = X$ in (3.3) and using (2.1), (2.2) and (2.12), we get

$$-(\alpha^{2} + \sigma) g(Y, Z) - (\alpha^{2} + \sigma) \eta(Y) \eta(Z) = -\frac{b}{a} Ric (Y, Z) - \frac{b}{a} (n - 1)(\alpha^{2} + \sigma) \eta(Y) \eta(Z) + \frac{r}{an} \left[\frac{a}{n-1} - b \right] [g(X, Y) \eta(Z) - g(Y, Z) \eta(X)].$$

From above, we get

$$Ric (Y,Z) = \left[\frac{a}{b} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{n-1} - b \right) g(Y,Z) \right] + \left[\left\{ \frac{a - b(n-1)}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{n-1} - b \right) \right] \eta(Y) \eta(Z).$$
(3.4)

From (3.4), we can state the following theorem:

Theorem 3.1: A pseudo W_8 -flat Lorentzian α – para Kenmotsu manifold is always an η -Einstein manifold, provided α and σ are constants.

Differentiating (3.4) along X and using (2.2) and (2.3), we get

$$(D_X Ric)(Y,Z) = \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b \right] \left[g(Y,Z) + \eta(Y)\eta(Z) \right] + \left[\left\{ \frac{a - (n-1)b}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[(D_X \eta)Y \eta(Z) + \eta(Y)(D_X \eta)Z \right].$$

$$(D_X Ric)(Y,Z) = \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b \right] \left[g(Y,Z) + \eta(Y) \eta(Z) \right] + \left[\left\{ \frac{a - (n-1)b}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[-\alpha \Omega(\phi X, Y)\eta(Z) - \alpha \eta(Y)\Omega(\phi X, Z) \right].$$

$$(D_X Ric)(Y,Z) = \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b \right] \left[g(Y,Z) + \eta(Y) \eta(Z) \right] + \left[\left\{ \frac{a - (n-1)b}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \left[\frac{a - (n-1)b}{b} \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) + \frac{r}{bn} \left[\frac{a}{(n-1)} - b \right] (\alpha^2 + \sigma) +$$

$$[-\alpha \{g(X,Y) + \eta(X)\eta(Y)\}\eta(Z) - \alpha \eta(Y)\{g(X,Z) + \eta(X)\eta(Z)\}].$$

$$(D_X Ric)(Y,Z) = \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b\right] [g(Y,Z) + \eta(Y)\eta(Z)] - \alpha \left[\left\{\frac{a - (n-1)b}{b}\right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b\right)\right] \times [g(X,Y)\eta(Z) + g(X,Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z)], \tag{3.5}$$

where α and are σ constant.

Using (3.5), we get

$$(D_X \operatorname{Ric})(Y, Z) - (D_Y \operatorname{Ric})(X, Z) = \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b \right] [g(Y, Z) + \eta(Y) \eta(Z)] - \frac{dr(Y)}{bn} \left[\frac{a}{(n-1)} - b \right] [g(X, Z) + \eta(X)\eta(Z)] - \alpha \left[\left\{ \frac{a - (n-1)b}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times [g(X, Z)\eta(Y) - g(Y, Z)\eta(X)].$$
(3.6)

Differentiating (2.18) covariantly along X, we get

$$(D_X \operatorname{Ric})(Y, Z) = -\frac{\operatorname{dr}(X)}{n} g(Y, Z), \quad \text{provided } a - (n-1)b \neq 0.$$
(3.7)

Using (3.7), we get

$$(D_X Ric)(Y, Z) - (D_Y Ric)(X, Z) = \frac{dr(Y)}{n} g(X, Z) - \frac{dr(X)}{n} g(Y, Z).$$
(3.8)

From (3.6) and (3.8), we get

$$\begin{split} \frac{dr(Y)}{n}g(X,Z) - \frac{dr(X)}{n}g(Y,Z) &= \frac{dr(X)}{bn} \left[\frac{a}{(n-1)} - b \right] \left[g(Y,Z) + \eta(Y) \, \eta(Z) \right] - \\ &\qquad \qquad \frac{dr(Y)}{bn} \left[\frac{a}{(n-1)} - b \right] \left[g(X,Z) + \eta(X) \eta(Z) \right] - \\ &\qquad \qquad \alpha \left[\left\{ \frac{a - (n-1)b}{b} \right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{(n-1)} - b \right) \right] \times \\ &\qquad \qquad \left[g(X,Z) \, \eta(Y) - g(Y,Z) \, \eta(X) \right]. \end{split}$$

If r is constant from above, we get

$$-\alpha\left[\left\{\frac{a-(n-1)b}{b}\right\}(\alpha^2+\sigma)+\frac{r}{bn}\left(\frac{a}{(n-1)}-b\right)\right]\left[g(X,Z)\,\eta(Y)-g(Y,Z)\,\eta(X)\right]=0,$$

or,

$$\left\{\frac{a-(n-1)b}{b}\right\}\left[\left(\alpha^2+\sigma\right)+\frac{r}{n(n-1)}\right]=0,$$

or,

$$r = -n(n-1)(\alpha^2 + \sigma), \tag{3.9}$$

provided $a - (n-1)b \neq 0$ and α and σ are constants.

From (3.4) and (3.9), we get

$$Ric(Y,Z) = (\alpha^2 + \sigma)(n-1)g(Y,Z).$$
 (3.10)

Using (3.9) and (3.10) in (3.2), we get,

$${}^{\prime}R(X,Y,Z,W) = \frac{b}{a} \left[(\alpha^{2} + \sigma) (n-1) g(Y,Z) g(X,W) - (\alpha^{2} + \sigma) (n-1) g(X,Y) g(Z,W) \right] - \frac{n (n-1)(\alpha^{2} + \sigma)}{an} \left(\frac{a}{n-1} - b \right) \left[g(X,Y)g(Z,W) - g(Y,Z)g(X,W) \right].$$

$${}^{\prime}R(X,Y,Z,W) = (\alpha^{2} + \sigma) \left[g(Y,Z) g(X,W) - g(X,Y) g(Z,W) \right]. \tag{3.11}$$

From (3.11), we can state the following theorem:

Theorem 3.2: In a pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold, if the scalar curvature r is constant, then manifold is of constant curvature, provided α , σ are constants and $\alpha - (n-1)b \neq 0$.

From (3.11), we get

$$R(X,Y)Z = (\alpha^2 + \sigma)[g(Y,Z)X - g(X,Y)Z]. \tag{3.12}$$

Using (2.1), (2.2), (2.3), (3.10) and (3.12), we can state the following theorem:

Theorem 3.3: In a pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold, if the scalar curvature r is constant, then

(i)
$$R(X,\xi) Y = (\alpha^2 + \sigma) [\eta(Y)X - \eta(X)Y],$$

(ii)
$$R(\xi, X) Y = (\alpha^2 + \sigma) [a(X, Y)\xi - n(X)Y].$$

(iii)
$$R(X,Y) \xi = (\alpha^2 + \sigma) [\eta(Y)X - g(X,Y)\xi],$$

(iv)
$$Ric(X,\xi) = (n-1)(\alpha^2 + \sigma) \eta(X)$$
,

(v)
$$Ric(\xi,X) = (n-1)(\alpha^2 + \sigma) \eta(X)$$
, and

(vi)
$$Ric(\phi X, \phi Y) = Ric(X, Y) + (n-1)(\alpha^2 + \sigma) \eta(X) \eta(Y)$$

provided $a - (n-1)b \neq 0$, α and σ are constants.

From (3.4), we get

$$QY = \left[\frac{a}{b} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{n-1} - b\right) Y\right] + \left[\left\{\frac{a - (n-1)b}{b}\right\} (\alpha^2 + \sigma) + \frac{r}{bn} \left(\frac{a}{n-1} - b\right)\right] \eta(Y)\xi.$$

Contracting above with respect to Y and using (2.1), we get

$$r = \left[\frac{a}{b}\left(\alpha^2 + \sigma\right) + \frac{r}{bn}\left(\frac{a}{n-1} - b\right)\right]n + \left[\left\{\frac{a - b(n-1)}{b}\right\}\left(\alpha^2 + \sigma\right) + \frac{r}{bn}\left(\frac{a}{n-1} - b\right)\right],$$

which gives

$$r = \frac{1}{[(2n-1)b-a]} n(n-1)(a+b)(\alpha^2 + \sigma), \text{ provided } (2n-1)b-a \neq 0.$$
 (3.13)

Using (3.13) in (3.4), we get

$$Ric (Y,Z) = \frac{(a^{2} + \sigma)}{[(2n-1)b-a]} \left[\left\{ (n+1)a - (n-1)b \right\} g(Y,Z) + 2n \left\{ a - (n-1)b \right\} \eta(Y) \eta(Z) \right], \text{ provided } (2n-1)b - a \neq 0,$$
 (3.14)

Using (3.13) and (3.14) in (3.1), we get,

$$R(X,Y) Z = (\alpha^{2} + \sigma)[g(Y,Z) X - g(X,Y) Z] + \frac{2n(\alpha^{2} + \sigma)\{a - (n-1)b\}}{a\{(2n-1)b - a\}} [\eta(Y)\eta(Z)X - \eta(X)\eta(Y)Z], \text{provided } (2n-1)b - a \neq 0. (3.15)$$

Since $\alpha \neq 0$, From (3.15), we can state the following theorem:

Theorem 3.4: In a pseudo W_8 -flat Lorentzian α – para Kenmotsu manifold, if $a(n-1)b \neq 0$ and $(2n-1)b - a \neq 0$, then the manifold can not be of constant curvature, provided α and σ are zero constants.

If a=1 and $b=\frac{1}{n-1}$, then from (2.19), we get $\widetilde{W}_8=W_8$. Also from (3.15), we get

$$R(X,Y) Z = (\alpha^2 + \sigma) [g(Y,Z) X - g(X,Y) Z], \text{ provided } (2n-1)b - a \neq 0.$$
 (3.16)

From (3.16) we can state the following theorem:

Theorem 3.5: In a W_8 -flat Lorentzian α -para Kenmotsu manifold, if $(2n-1)b - \alpha \neq 0$, then manifold is of constant curvature, provided α and σ are constants.

Using (2.1), (2.2), (2.3), (3.14) and (3.15), we can state the following theorem:

Theorem 3.6: In a pseudo W_8 -flat Lorentzian α -para Kenmotsu manifold, if $(2n-1)b - a \neq 0$, the following relations hold:

(i)
$$R(X,\xi) Y = (\alpha^2 + \sigma) \left[1 - \frac{2n\{a - (n-1)b\}}{a\{(2n-1)b - a\}} \right] [\eta(Y) X - \eta(X) Y],$$
 (3.17)

(ii)
$$R(\xi, X)Y = (\alpha^2 + \sigma) g(X, Y) \xi - (\alpha^2 + \sigma) \left[1 - \frac{2n \{a - (n-1)b\}}{a \{(2n-1)b - a\}} \right] \eta(X)$$

$$+ \left[\frac{2n(\alpha^2 + \sigma)\{a - (n - 1)b\}}{a\{(2n - 1)b - a\}} \right] \eta(X) \eta(Y) \xi, \tag{3.18}$$

(iii)
$$R(X,Y) \xi = (\alpha^2 + \sigma) \left[1 - \frac{2n\{a - (n-1)b\}}{a\{(2n-1)b - a\}} \right] \eta(Y) X - (\alpha^2 + \sigma) g(X,Y) \xi$$

$$-\left[\frac{2n(\alpha^2+\sigma)\{a-(n-1)b\}}{a\,\{(2n-1)b-a\}}\right]\eta(X)\,\eta(Y)\,\xi,\tag{3.19}$$

(iv)
$$Ric(X,\xi) = (\alpha^2 + \sigma)(n-1)\eta(X),$$
 (3.20)

(v)
$$Ric(\xi, X) = (\alpha^2 + \sigma)(n - 1)\eta(X),$$
 (3.21)

(vi)
$$Ric (\phi X, \phi Y) = \frac{(\alpha^2 + \sigma)}{[(2n-1)b-a]} [\{(n+1)a - (n-1)b\} \{g(X,Y) + \eta(X) \eta(Y)\}],$$
 (3.22)

provided α and σ are constants.

If a = 1 and $b = \frac{1}{n-1}$, then from (3.14), we get

$$Ric(Y,Z) = (\alpha^2 + \sigma)(n-1)g(Y,Z).$$
 (3.23)

Using (2.1), (2.2), (2.3), (3.16) and (3.23), we can state the following theorems:

Theorem 3.7: In a W_8 -flat Lorentzian α -para Kenmotsu manifold the following relations hold:

(i)
$$R(X,\xi)Y = (\alpha^2 + \sigma) [\eta(Y)X - \eta(X)Y], \tag{3.24}$$

(ii)
$$R(\xi, X)Y = (\alpha^2 + \sigma)[g(X, Y)\xi - \eta(X)Y],$$
 (3.25)

(iii)
$$R(X,Y)\xi = (\alpha^2 + \sigma) \left[\eta(Y)X - g(X,Y)\xi \right], \tag{3.26}$$

(iv)
$$Ric(X,\xi) = (\alpha^2 + \sigma)(n-1)\eta(X),$$
 (3.27)

(v)
$$Ric(\xi, X) = (\alpha^2 + \sigma)(n-1)\eta(X),$$
 (3.28)

(vi)
$$Ric(\phi X, \phi Y) = Ric(X, Y) + (\alpha^2 + \sigma)(n - 1)\eta(X)\eta(Y), \tag{3.29}$$

provided $(2n-1)b - a \neq 0$, α and σ are constants.

References

- 1. Bagewadi, C.S. Prakasha, D.G. and Venkatesha (2007). On pseudo projectively flat LP–Sasakian manifold with coefficient *α*, Annal. Univ. Mariae Curic–Sklodowska Lubin–Polomia LXI, Sec., A:1–8.
- **2.** De, U.C., Shaikh, A.A. and Sengupta, A. (2002). On LP–Sasakian manifold with coefficient α, Kyungpook Math Jour., 42(1):177–186.
- **3.** De, U.C., Shaikh, A.A. (2009). Lorentzian para–Sasakian manifolds, in: complex manifolds and Contact manifolds, Narosa Publishing House Pvt. Ltd., pp. 259-260.
- **4.** Haseeb, A. and Prasad, R. (2002). Some results on Lorentzian para–Kenmotsu manifolds, Bulletin of the Transilvania University of Brasov, 13 (62) No.1 series III: Mathematics, informations, Physics, pp. 185–198.
- **5.** Haseeb, A. and Prasad, R. (2021). Certain results on Lorentzian para–Kenmotsu manifolds, Bol. Soc. Paran. Mat. (35), 39(3):201–220.
- 6. Kachar, H. (1982). Infinitesimal characterization of Friedmann Universes, Arch. Math. Basel. 38:58–64.
- 7. Prasad, B., Yadav, R.P.S. and Pandey, S.N. (2018). Pseudo W_8 —curvature tensor \widetilde{W}_8 On a Riemannian manifold, Journal of progressive Science, 09(01 & 02):35–43.
- **8.** Prasad, B. and Maurya, A.M. (2007). Quasi concircular curvature tensor on a Riemannian manifold News Bull Cal Math Soc 30 (1–3): 5–6.
- 9. Prasad, R., Verma, A. and Yadav, V.S. (2023). Chaacterization of the perfect fluid Lorentzian α -para Kenmotsu spacetimes, Ganita, 73(2):89–104.
- **10.** Pankaj, S.K., Chaubey and Prasad, R. (2021). Three dimensional Lorentzian para–Kenmotsu manifolds and yamabe soliton, Honam Mathematical J., 43(4):613–626.
- 11. Motsumoto, K. (1989). On Lorentzian para contact manifolds, Bull. Yamagata Univ. Mat. Sci., 12:151–156.
- **12.**Singh, S.C. and Maurya, A. (2002). On quasi–conformally flat LP–Sasakian manifold with a coefficient α , Journal of Progressive Science, 13(01 & 02):38–44.

Received on 27.04.2024 and accepted on 02.08.2024