
Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

44

 A study of Graph-Theoretic Algorithms

Sudhir Prakash Srivastava
IET, Dr.Ram Manohar Lohia Avadh University, Ayodhya,

Uttar Pradesh-224001, India
 Email- sudhir_ietfzd@yahoo.com

Abstract

A study of Graph-theoretic algorithm is discussing about Graph theory and
combinatorial analysis of arrangements, ordering, selection of discrete objects etc. First
of all, we describe some basic about Graph theory. Then we focus on major algorithm to
describe different type of case which is very important part of Graph-Theoretic
algorithm. This study is very significant for interested reader to find it fruitful sources
and discover for himself this wealth of knowledge.

Keywords- Spanning tree, Shortest Path, Adjacency Matrix, Algorithm

Introduction

Graph theory and combinatorial analysis involves the study of arrangements,
ordering, selection of discrete objects etc. The questions normally asked are those of
existence or of enumeration. With the advent of digital computer, a new type of
investigation has gained importance. Not only “does the arrangement exist?”, “how many
arrangements are there?” are the question of interest,” what is the best arrangement?”
“how does one find all the arrangements satisfying a particular property?” are becoming
matters of concern to the combinatorial lists. Interestingly enough the digital computer
has itself created technical problems of combinatorial nature. Research in computer
design, the theory of computation, application of computer to numerical and non-
numerical problems have required new methods, new approaches, and new mathematics
insights.

 From one view point the problems of “what is the best arrangement” etc. are
trivial since there are a finite number of feasible solutions to graph-theoretic problems.
For example, the problem of finding the lowest weight Hamiltonian circuit in a weighted
complete graph of n vertices can be solved by just listing the ½ (n-1)! different

ISSN:0976-4933
Journal of Progressive Science
Vol.09, No.01 & 02, pp 44-56 (2018)

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

45

Hamiltonian circuits and then picking the one of lowest weight. These brute force
techniques won’t work. If the computer is programmed to examine each of these feasible
Hamiltonian circuits at the rate of one each nanosecond, it will finish its task for n=21 in
about 400 years, for n = 22 in about 8,400 years and so on. Clearly the brute force
enumeration technique is not “effective” for the Hamiltonian circuit problem. How does
one evaluate the effectiveness of a solution procedure or an algorithm? One standard
which is now most accept is that of “Polynomial bounded”. An algorithm is considered
“good” if the required number of elementary computational steps is bounded by a
polynomial in the size of the problem (Lawler, 1976), (Srivastava, 2016). Number of
questions crop up, what is an elementary computational step? What is meant by the
“size” of a problem and why the polynomial bound?

 Polynomial bound, essentially because a polynomial function grows less rapidly
than an exponential function. An exponential function grows much less rapidly than a
factorial function. The issues of computational step and size of the problem are somewhat
inter-related and for our purposes is representation dependent.

Representations

 A graph G = (V, E) where V is the set of vertices and E is the set of edges has the
most familiar representation on paper by dots and line segments. In a computer the graph
must be represented in a discrete way. The following are the most common methods.

a. Adjacency Matrix

An adjacency matrix of G = (V, E) is a |V| ×|V| matrix. If A = ൣa୧୨൧ in which

a୧୨ = 1 if there is an edge from vertex i to vertex j in G, otherwise a୧୨ = 0. Figure 1

shows a directed graph and its adjacency matrix.

 0 0 0 0 0 0 1

 1 0 1 1 1 0 1

 7 2 0 0 0 1 0 0 0

 A= 0 0 0 0 0 0 0

 3 1 0 0 1 0 1 1

 0 0 0 0 0 0 1

 0 0 0 0 0 0 0

 b. List of edges

 5

6 4

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

46

Sometimes it may be enough to list the edges in the graph as pairs of vertices
implemented by two arrays. g = {g1, g2, …………… g[E]} and h = {h1, h2,
………………., h[E]}. Each entry is a vertex label, and the ith edge in G goes gi to hi. for
the digraph of Fig. 1 a representation could be

g = (1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 6)

h = (7, 3, 4, 5, 7, 4, 6, 1, 6, 7, 7)

c. Adjacency structures or lists

A vertex y in a directed graph is called a successor of another vertex if there is an edge
directed from x to y; vertex x is then called the predecessor of y. In an undirected graph
two vertices are called neighbors of each other if there is an edge between them. A graph
can be described by the list of all successors (neighbors) of each vertex; Adj (v) is list of
successors (neighbors) of v. for the digraph of figure 1 an adjacency structure is as
follows:

 v Adj (v)

1 : 7

2 : 3, 4, 5, 7

3 : 4

4 : 6

5 : 1, 6, 7

6 : 7

7 : -

 If the space needed to store an integer is the unit of space then one can easily see
that using list of edges or adjacency structures one can represent the graph G in no more
than 0(|𝑉|+|𝐸|) space (f(x) = 0 (g(x)) as x xo If and only if there exists a constant c
such that

lim sup ቚ
௙(௫)

௚(௫)
ቚ= 0.

x xo

We say that the function grows no faster than g(x)). Adjacency matrix on the other hand
requires 0(|𝑉|ଶ) space. The unit of computation step may be roughly defined as the
amount of time needed to look at an edge in the graph under this criterion. Most
algorithms would require at least 0(|𝑉|ଶ) time if the graph is represented by the adjacency

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

47

matrix and 0(|𝑉|+|𝐸|) time if list of edge or Adjacency structures are used. This is
because for most non-trivial problems at least each edge in the graph would need to be
looked upon at least once.

Some Basic Algorithms

 The most general question about graphs concern connectivity, paths and
distances. We may want to find out whether the graph is connected; if it is connected then
what is the shortest distance between a specified pair of vertices. If it is disconnected, we
may be interested in determining its connected components. Algorithms for answering
some of these questions and related matters will be discussed in the following.

1- Spanning trees

Spanning trees of a graph G are sub graphs of G and contain every vertex of G. If G is
not connected then the set consisting of a spanning tree for each component is called a
spanning forest of G. In a weighted graph, i.e. a graph which has weights (real numbers)
associated with each edge it is often of interest to determine a spanning tree (forest) of
minimum weight (i.e. sum of the weights of all edges is minimum). An interesting
algorithm for finding a minimum spanning tree is by Kruskal (1956). The algorithm is as
follows: List all the edge of graph G in the order of non-decreasing weight. Next, selected
the smallest edge of G. Then for each successive step select (from all remaining edges of
G) another smallest edge that makes on circuit with the previously selected edges.
Continue until |𝑉|-1 edgeshave been selected, and there edges will constitute the desired
minimum spanning tree T. This process is known as the greedily algorithm. That the
greedy algorithm produces the minimum spanning tree can be proved as follows.
Suppose T were not a minimum spanning tree. Let the greedy algorithm add edges to T in
the order e1, e2, ……., en so that these edges are in the order of non-decreasing weights.
Let Tmin be a minimum spanning tree that contains edge e1, e2, ……., ei-1 for the largest
possible i. Clearly, i ≥ 1, and since T is not a minimum spanning tree, i ≤ n. Adding 𝑒௜
to Tmin causes a cycle that must include an edge x ≠ 𝑒௝, 1≤ j ≤ i. Since x and e1, e2,

…….., ei-1 are in Tmin, which is acyclic, and since the greedy algorithm adds the edge of
least cost that does not cause a cycle, we know that the weight of x is at least the weight
of 𝑒௜ (otherwise x would have been added to e1, e2, …….., ei-1 instead of 𝑒௜). If the weight
of x is more than the weight of ei , then

Tmin = (Tmin – {x}) { ei } is a spanning tree of less total weight then Tmin , contradiction.
Thus, the weight of x and the weight of ei must be equal, making a T’min a minimum
spanning tree and contradicting the assumption that i was as large as possible. Therefore,
T must be a minimum spanning tree.

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

48

0 1 0 0 0

 3 0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 1 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

It can be shown that the greedy algorithm has time requirement of 0(|𝐸| log |𝐸|).

Often it is of interest to examine all the spanning tree of a graph particularly in electrical
networks analysis when the networks are interpreted as graphs. Since the number of
spanning trees grows exponentially with the number of vertices the problem becomes
infeasible even for moderate size graphs until case is taken to do the generation
efficiently. The most successful algorithm is by Minty. The set of all spanning trees of 0
is divided into two classes, those that contain a specific edge (u,v) and those that do not
contain (u,v) the spanning trees that contain (u,v) are the one consisting of (u,v) and a
spanning tree of the graph Gu,v obtained from G by merging vertices u and v into a “super
vertex” (removing any self-loops that might result). Other spanning trees are the spanning
trees of the graph G (u,v), obtained by deleting edge (u,v) form G.

 Notice that Gu,v and G – (u,v) are smaller than G. Thus successive applications of
this basic step reduce the graphs until either all n vortices are merged together into one
super-vortex or the graphs become disconnected and have no spanning trees. If properly
implemented, this algorithm requires 0 (|𝑉| + |𝐸| + |𝐸| .t) operations, Where t is the
number of spanning trees of G. Figure 2 illustrates the process on a small example. Large
circles denote “super-vortices”.

2- Transitive Closure

1 2

5 4

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

49

Suppose that G = (V, E) is a directed graph represented as a |𝑉| × |𝑉|djacency matrix A

= ൣ𝑎௜௝൧. We would like to compute the connectivity matrix A* = ൣ𝑎 ∗௜௝൧ defined by 𝑎 ∗௜௝

=1 if there is a path in G fro i to j and 𝑎 ∗௜௝= 0 if not. If we view E, the edge of G as a

binary relation of V, the vortices of G, then 𝐴 ∗ is the adjacency matrix for the graph
G*=(V, E*) where E* is the transitive closure of the binary relation E. Figure 3 show a
graph G, its adjacency matrix A, its transitive closure G* and its adjacency matrix A*.

 The method for computing A* from A given below is due to Warshall (1962). Its
importance as the same method with some modification is also the best-known method
for computing the shortest distance between all pairs of vortices in a graph.

 A* is computed from A by defining a sequence of matrices

𝐴(ை) = ቂ𝑎௜௝
(ை)

ቃ, 𝐴(ଵ) = ቂ𝑎௜௝
(ଵ)

ቃ, … . , 𝐴|௏| = ൣ𝑎௜௝
|௏|

൧ as follows:

𝑎௜௝
(ை)

= 𝑎௜௝,

𝑎௜௝
(௟)

= 𝑎௜௝
(௟ିଵ)

V𝑎௜௝
(௟ିଵ)

∩ 𝑎௜௝
(௟ିଵ)

It is not difficult to show, using induction, that 𝑎௜௝
(௟)=1 if and only if there is a path from 1

𝜀 V to j 𝜀 V with intermediate vertices on the path chosen only from {1, 2…..,l} V. For l
= O it is obvious. If it is true for l-1, then

𝑎௜௝
(௟)

= 𝑎௜௝
(௟ିଵ)

V𝑎௜௝
(௟ିଵ)

∩ 𝑎௜௝
(௟ିଵ) is 1 if and only if either =1 (there is a path from I to j using

only vertices in {1,2,……, l-1) or both 𝑎௜௟
(௟ିଵ)and 𝑎௜௟

(௟ିଵ) are 1 (then one paths from i to l

and l to j using only vertices {1, 2, ……….., l-1}). Thus it is true for l.

3-Shortest Paths

 Given a directed graph G = (V, E) let 𝑢௜௝ be a weight associated with each are (i,

j) denoting the length of (i, j). Problem of finding the shortest path between two specified
vertices with no repeated nodes are possibly the most fundamental and important of all
combinatorial optimization problems.

 There does not seen to be a really good method for finding the length of a shortest
path from a specified origin to a specified destination without, in effect, finding the
lengths of shortest paths from the origin to all other nodes. We shall, therefore, view the
problem so such.

Let

𝑢௜௝= the finite length of the arc (i, j) if there is such an are = ∞ otherwise

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

50

𝑢௝= the length of the shortest path form origin origin to node j.

 If the origin is numbered 1, the rest of the nodes are numbered 2, 3, ……, n and
there are no directed cycles of negative then u1 = 0. For each node j, j ≠ 1, there must be
some final are (k, j) in the shortest path from 1 to j. from the principle of optimality if is
clear that 𝑢௝ = 𝑢௞ + 𝑢௞௝ . since there are only a finite number of choices for k, i.e. k = 1,

2, ……, j-1, j+1, ….., n, k must be a node for which 𝑢௞ + 𝑢௞௝ is as small as possible,

therefore the shortest path must satisfy the following equations.

𝑢ଵ= 0

𝑢௝= ൛𝑢௞ + 𝑢௞௝ൟ, (𝑗 = 2,3, … . , 𝑛)
௞ஷ௝

௠௜௡

 These equations are known as Bellman-Ford equations and are necessary and
sufficient to determine the lengths of the shortest paths. If there are no positive cycles in
the networks then it can be shown that the solution to the Bellman-Ford equations is
unique. As the equation an non-linear the equation do not lend themselves to solutions as
they stand. We shall discuss cases when the solution is easy to obtain and how the
problems of non-linearity are overcome.

 A situation which is easy to solve is when all the arc lengths are positive. 0(|𝑉|ଶ)
algorithm that will not be described is due to Dijkastra (1959), (Srivastava, 2016)
Dijkstras algorithm labels the vertices of the given digraph. At each stage of the
algorithm some vertices have permanent labels and the others temporary labels.
Permanent label of a vertex represents the true length of the shortest path to the node.
Temporary label represents an upper bound on the length of a shortest path.

 Initially, the only permanently labeled node is the origin, which is given the label
u1 = 0; each of the other nodes j is given the tentative label 𝑢௝ = 𝑎௜௝. The general step is

as follows. Find the tentatively labeled vertex k for which is 𝑢௞ minimal. Declare k to be
permanently labeled, and revise the remaining temporary labels 𝑢௝ by comparing 𝑢௝ with

𝑢௞ + 𝑎௞௝ , and replacing 𝑢௝ by the smaller of the two values. Procedure terminates when

all nodes are permanently labeled.

 The above method will not work if some of the edges have negative weights. This
is because in the above method once a vertex gets a permanent label, its label cannot be
altered. The method can be modified provided all the cycles have positive weight. The
modification is the obvious one, i.e., at each iteration every vertex with a permanent label
also gets a new temporary label if this temporary label turns out to be smaller than the
final label. However, this is most inefficient. The algorithm which is discussed next is

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

51

duo to Floyd (1962) and find shortest paths between all pairs of vertices. It is strikingly
similar to warshalls method for transitive closure and has the same complexity.

Given W = [𝑊௜௝] the weight matrix of G = (V, E) we want to compute W* = [𝑊௜௝
∗], in

which 𝑊௜௝
∗ is the length of the shortest path from I to j in G. Analogous to Warshalls

method we define a sequence of matrices

𝑊௟ = ቂ𝑤௜௝
(௟)

ቃ as follows.

𝑤௜௝
(௢) = 𝑤௜௝

𝑤௜௝
(௟) = mi (𝑤௜௝

(௟ିଵ)
, 𝑤௜௝

(௟ିଵ)
+ 𝑤௜௝

(௟ିଵ))

Assuming that the weight of a nonexistent edge is ∞. The value of 𝑤௜௝
(௟) is the length of

the shortest path from i to j with intermediate vertices chosen only from { 1, 2, …….., l}
V.

 An O (𝑉ଷ) implemented on of the above idea is given below in a more formal language.

for l = 1 to |𝑉| do

for i = 1 to |𝑉| do

if 𝑤௜௟ ≠ ∞ then for j = 1 to |𝑉| do

𝑤௜௝ − min൫𝑤௜௝, 𝑤௜௟ + 𝑤௜௝൯

4-Travelling salesman problem

 There are a number of combinatorial problem requiring answers to questions as
“list all possible…..” “How many way are there to …………” which require exhaustive
search of the set of all potential solutions.

Generating all spanning trees of a graph is one such example.

 One general technique for organizing such a search is back tracking. Batch
tracking works by continually trying to extend partial solutions. At each stage of the
search, if an extension of the current partial solution is not possible, we “back track to a
shorter partial solution and try again. This search procedure can be represented by a tree
called to search tree. Let us assume that the solution to the problem consists of a vector
(𝑎ଵ, 𝑎ଶ … …) of finite but undetermined length satisfying certain constraints. The search
tree representing a systematic search for such a solution would look as in figure 4.

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

52

 start

 Level 1 choose for a1

 Level 2 choose for a2 given a1

 Choose for a3 given a1 & a2

 Figure 4

The root of the tree is the null vector. Its sons are the choices of a1, and, in general the
nodes at the level are the choices for 𝑎௞ give the choice mode for
𝑎ଵ, 𝑎ଶ, , 𝑎௞ିଵ as indicated by the of these nodes, in the tree of figure 4 back
track traverses are shown by dashed lines.

 It should not be difficult to imagine that the search for solution if the solution lies
somewhere on the search tree can become extremely time consuming if the search is not
directed at each stage by using some information about the nature of the problem. One
such method of “pruning” the search tree is called branching and bounding. This method
of pruning or preclusion is based on the assumption that each solution has a cost
associated with it and the optimal solution (the one of least cost is to be found). In order
for branch and bound to be applicable the costs must be well defined on partial solution;
and for all partial solutions (𝑎ଵ, 𝑎ଶ, … … . . 𝑎௞ିଵ) ≤ 𝑐𝑜𝑠𝑡 (𝑎ଵ, 𝑎ଶ, … … , 𝑎௞ିଵ, 𝑎௞).

When the cots have these properties then we can discard a partial solution
(𝑎ଵ, 𝑎ଶ, … … . . 𝑎௞ିଵ) if its cost is greater than or equal to the cost of a previously
computed solution.

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

53

 Travelling salesman problem in a complete graph is one of the problems that can
be solved with branch and bound techniques.

 The algorithm that we now discuss for the travelling salesman problem is due to
Little et al. (1953). It utilizes branching and bounding and illustrates the technique of tree
re-arrangement such that near optimal solutions are found as early as possible. The tree
re-arrangement technique used is to split the remaining solutions into two groups at each
stage one including a particular are and those that exclude that are. The arc is chosen
according to the heuristic given below.

Figure 5

 figure 6.

Consider the cost matrix of a 7 × 7 travelling salesman problem given in Figure 5. The
heuristic uses the fact that if a constant is subtracted from any row or any column of the
cost matrix, the optimal solution does not change. The cost of the optimal solution
changes but not the path itself. The cost diminishes by the amount subtracted from the

∞ 3 93 13 33 9 47

4 ∞ 77 42 21 16 34

45 17 ∞ 36 16 28 25

39 90 80 ∞ 56 7 91

28 46 88 33 ∞ 25 57

3 88 18 46 92 ∞ 7

44 26 33 27 84 39 ∞

∞ 3 93 13 33 9 47

4 ∞ 77 42 21 16 34

45 17 ∞ 36 16 28 25

39 90 80 ∞ 56 7 91

28 46 88 33 ∞ 25 57

3 88 18 46 92 ∞ 7

44 26 33 27 84 39 ∞

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

54

row or the column. If such a subtraction results in each row end column containing a zero
with all the remaining non-negative then the total amount subtracted will be a lower
bound on the cost of any solution. In the cost matrix of figure 5, 3, 4, 16, 7, 25, 3 and 26
can be subtracted from rows 1 through 7, and 7, 1, 4 from columns 3, 4 and 7 to result in
the reduced matrix of A total of 96 was subtracted and so 96 is a lower bound on the cost
of any solution. The root of the binary search tree, therefore, is labeled as follows:

Lower bound = 96

 Suppose we choose they are (4, 6) to split the root. Right subtree will contain all
solutions that exclude they are (4, 6) and so we can set 𝑤ସ଺ =∞. The resulting matrix can
that have 32 subtracted from the fourth row, and thus the right subtree has a lower bound
of 96 + 32 = 128. As the left subtree will contain all solution that include (4, 6) we can
delete the fourth row and the sixth column. This is because we can never go form 4 to
anywhere else nor arrive at 6 from anywhere else. The resulting matrix is of one less
dimension. Also in this matrix (6, 4) is no longer usable and so we set 𝑤ସ଺ =∞. We can
also subtract 3 from the fourth row of the resulting matrix giving the left subtree a lower
bound of 96 + 3 = 99. The binary search tree at this stage would look like.

 Lower bound = 96

 Lower bound = 99 Lower bound = 128

 They are (4, 6) chosen to split the root because, of all arcs, it caused the greatest
increase in the lower bound of the right subtree. This rule is used because we would
prefer to find the solution following the left edges rather than the right edges. The left
edge reduce the dimension of the problem whereas the right edges only add another ∞ to
the matrix. At any stage we expand the node with the lowest lower bound. It should be
noted that the first solution found need not be the optimal solution. This will be if some
unexpanded node in the binary search tree has a lower bound which is smaller than the
solution just found. The solution will be optimal if the lower bound of all unexpanded
nodes is larger than the cost of the solution. A partial search tree for the travelling
salesman problem discussed above is given below:

All Solution

Solution with
(4, 6)

Solution without
(4, 6)

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

55

 Lb = 96

 Lb = 99 Lb = 128

 Lb = 99 Lb = 117

Lb = 112 Lb = 125

Experimental evidence indicates that the number of nodes examined is 0(1.26௡) for
random n × n matrices.

Conclusions

Algorithmic graph theory is a fast-growing field. Number of good books has appeared.
Some of these are listed in reference given below. What has been explored here does not
eve probe the surfaces of the known results extensively. The interested reader will find it
fruitful to go to the sources and discover for himself this wealth of knowledge.

References

All Solution

Solution with
(4, 6)

Solution without
(4, 6)

Solution with
(3, 5)

Solution without
(3, 5)

Solution with
(2, 1)

Solution without
(2, 61)

Journal of Progressive science, vol 9, no.1 &2, 2018
A Peer-reviewed Research Journal

56

1. Lawler, E. (1976). Combinatorial Optimistation; Networks and Matroids, Holt-
Rineheart.

2. Kruskal, J.B. (1956). On the shortest spanning subtree of a Graph and the
Travelling salesman Problem”, Proc. American Math. Soc., 7: 48-50.

3. Minkty, G.J. (1965). A Simple Algorithm for listing All the Trees of a Graph”, I
EEE Trans. Circuit Theory, 12: 120.

4. Warshall, S. (1962). A Theorem on Boolean Matrices, J. ACM, 9:11-12.
5. Dijksta, E. (1959). Two Problems in Connexion with Graphs”, Num. Math., 1:

269-271.
6. Floyed, R.W. (1962). Algorithm 97: Shortest Path, Comm. ACM, 5:345.
7. Little, J.D.C., K.G. Murty, D.W. Sweency, and O., Karel (1963). An Algorithm

for the Travelling Salesman Problem”, Operations Research, 11:977-989.
8. Reingold, E.M., J. Nievergelt, and N. Deo (1977). Combinatorial Algorithms”,

Preatice-Hall.
9. Christifides, N. (1974). Algorithmic Graph Theory”, Academic Press.
10. Srivastava, S.P. (2010). Study of Dirac and Charval Theorem for Hamiltonian

Graph, Research Analysis and Evaluation, 1(14 November);112-115
11. Srivastava, S.P. (2016). Study of Different algorithm in Euler Graph,

International Journal on Recent and Innovation Trends in Computing and
communication, 4(12): 308-311.

Received on 18.8.2018 and accepted on 20.9.2018

