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Abstract 

A study of Graph-theoretic algorithm is discussing about Graph theory and 
combinatorial analysis of arrangements, ordering, selection of discrete objects etc. First 
of all, we describe some basic about Graph theory. Then we focus on major algorithm to 
describe different type of case which is very important part of Graph-Theoretic 
algorithm. This study is very significant for interested reader to find it fruitful sources 
and discover for himself this wealth of knowledge. 
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Introduction 

Graph theory and combinatorial analysis involves the study of arrangements, 
ordering, selection of discrete objects etc. The questions normally asked are those of 
existence or of enumeration. With the advent of digital computer, a new type of 
investigation has gained importance. Not only “does the arrangement exist?”, “how many 
arrangements are there?” are the question of interest,” what is the best arrangement?”  
“how does one find all the arrangements satisfying a particular property?” are becoming 
matters of concern to the combinatorial lists. Interestingly enough the digital computer 
has itself created technical problems of combinatorial nature. Research in computer 
design, the theory of computation, application of computer to numerical and non-
numerical problems have required new methods, new approaches, and new mathematics 
insights.   

 From one view point the problems of “what is the best arrangement” etc. are 
trivial since there are a finite number of feasible solutions to graph-theoretic problems. 
For example, the problem of finding the lowest weight Hamiltonian circuit in a weighted 
complete graph of n vertices can be solved by just listing the ½ (n-1)! different 
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Hamiltonian circuits and then picking the one of lowest weight. These brute force 
techniques won’t work. If the computer is programmed to examine each of these feasible 
Hamiltonian circuits at the rate of one each nanosecond, it will finish its task for n=21 in 
about 400 years, for n = 22 in about 8,400 years and so on. Clearly the brute force 
enumeration technique is not “effective” for the Hamiltonian circuit problem. How does 
one evaluate the effectiveness of a solution procedure or an algorithm? One standard 
which is now most accept is that of “Polynomial bounded”. An algorithm is considered 
“good” if the required number of elementary computational steps is bounded by a 
polynomial in the size of the problem (Lawler, 1976), (Srivastava, 2016). Number of 
questions crop up, what is an elementary computational step? What is meant by the 
“size” of a problem and why the polynomial bound?  

 Polynomial bound, essentially because a polynomial function grows less rapidly 
than an exponential function. An exponential function grows much less rapidly than a 
factorial function. The issues of computational step and size of the problem are somewhat 
inter-related and for our purposes is representation dependent.  

Representations  

 A graph G = (V, E) where V is the set of vertices and E is the set of edges has the 
most familiar representation on paper by dots and line segments. In a computer the graph 
must be represented in a discrete way. The following are the most common methods.  

a. Adjacency Matrix 

An adjacency matrix of G = (V, E) is a |V|  ×|V| matrix. If A = ൣa୧୨൧ in which 

a୧୨ = 1 if there is an edge from vertex i to vertex j in G, otherwise a୧୨ = 0. Figure 1 

shows a directed graph and its adjacency matrix.                                                 

               0 0    0   0    0    0     1 

       1    0   1    1    1    0    1 

          7                                  2              0    0   0    1    0    0    0 

     A=          0    0   0    0    0    0    0 

 3           1    0   0    1    0    1    1                

      0    0   0   0    0     0    1 

      0   0   0    0    0     0    0 

 b. List of edges  

 

         5 

6                 4 
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Sometimes it may be enough to list the edges in the graph as pairs of vertices 
implemented by two arrays. g = {g1, g2, …………… g[E]} and h = {h1, h2, 
………………., h[E]}. Each entry is a vertex label, and the ith edge in G goes gi to hi.  for 
the digraph of Fig. 1 a representation could be  

g = (1, 2, 2, 2, 2, 3, 4, 5, 5, 5, 6) 

h = (7, 3, 4, 5, 7, 4, 6, 1, 6, 7, 7) 

c. Adjacency structures or lists 

A vertex y in a directed graph is called a successor of another vertex if there is an edge 
directed from x to y; vertex x is then called the predecessor of y. In an undirected graph 
two vertices are called neighbors of each other if there is an edge between them. A graph 
can be described by the list of all successors (neighbors) of each vertex; Adj (v) is list of 
successors (neighbors) of v. for the digraph of figure 1 an adjacency structure is as 
follows: 

                                    v                   Adj (v) 

1  :  7 

2  :  3, 4, 5, 7 

3 : 4 

4  : 6 

5  : 1, 6, 7 

6  : 7 

7  :              - 

 If the space needed to store an integer is the unit of space then one can easily see 
that using list of edges or adjacency structures one can represent the graph G in no more 
than 0(|𝑉|+|𝐸|)   space (f(x) = 0 (g(x)) as x       xo  If and only if there exists a constant c 
such that  

lim sup ቚ
௙(௫)

௚(௫)
ቚ= 0.  

x       xo 
 
We say that the function grows no faster than g(x)). Adjacency matrix on the other hand 
requires 0(|𝑉|ଶ) space. The unit of computation step may be roughly defined as the 
amount of time needed to look at an edge in the graph under this criterion. Most 
algorithms would require at least 0(|𝑉|ଶ) time if the graph is represented by the adjacency 
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matrix and 0(|𝑉|+|𝐸|) time if list of edge or Adjacency structures are used. This is 
because for most non-trivial problems at least each edge in the graph would need to be 
looked upon at least once.  

Some Basic Algorithms  

 The most general question about graphs concern connectivity, paths and 
distances. We may want to find out whether the graph is connected; if it is connected then 
what is the shortest distance between a specified pair of vertices. If it is disconnected, we 
may be interested in determining its connected components. Algorithms for answering 
some of these questions and related matters will be discussed in the following.  

1- Spanning trees 

Spanning trees of a graph G are sub graphs of G and contain every vertex of G. If G is 
not connected then the set consisting of a spanning tree for each component is called a 
spanning forest of G. In a weighted graph, i.e. a graph which has weights (real numbers) 
associated with each edge it is often of interest to determine a spanning tree (forest) of 
minimum weight (i.e. sum of the weights of all edges is minimum). An interesting 
algorithm for finding a minimum spanning tree is by Kruskal (1956). The algorithm is as 
follows: List all the edge of graph G in the order of non-decreasing weight. Next, selected 
the smallest edge of G. Then for each successive step select (from all remaining edges of 
G) another smallest edge that makes on circuit with the previously selected edges. 
Continue until |𝑉|-1 edgeshave been selected, and there edges will constitute the desired 
minimum spanning tree T. This process is known as the greedily algorithm. That the 
greedy algorithm produces the minimum spanning tree can be proved as follows. 
Suppose T were not a minimum spanning tree. Let the greedy algorithm add edges to T in 
the order e1, e2, ……., en so that these edges are in the order of non-decreasing weights. 
Let Tmin be a minimum spanning tree that contains edge e1, e2, ……., ei-1 for the largest 
possible i. Clearly, i ≥ 1, and since T is not a minimum spanning tree, i ≤  n. Adding 𝑒௜ 
to Tmin causes a cycle that must include an edge x ≠  𝑒௝, 1≤ j ≤ i. Since x and e1, e2, 

…….., ei-1 are in  Tmin, which is acyclic, and since the greedy algorithm adds the edge of 
least cost that does not cause a cycle, we know that the weight of x is at least the weight 
of 𝑒௜ (otherwise x would have been added to e1, e2, …….., ei-1 instead of 𝑒௜). If the weight 
of x is more than the weight of ei , then 

Tmin = (Tmin – {x}) { ei } is a spanning tree of less total weight then Tmin , contradiction. 
Thus, the weight of x and the weight of ei must be equal, making a T’min a minimum 
spanning tree and contradicting the assumption that i was as large as possible. Therefore, 
T must be a minimum spanning tree. 
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0    1    0    0    0 

         3    0    0    1    0    0 

0    0    0    1    0 

0   1    0    0    0 

1    0    0    1    0 

 

0     1    1    1    0 

0    1    1    1    0 

0    1    1    1    0 

0    1    1    1    0 

0    1    1    1    0 

It can be shown that the greedy algorithm has time requirement of 0( |𝐸| log |𝐸| ).  

Often it is of interest to examine all the spanning tree of a graph particularly in electrical 
networks analysis when the networks are interpreted as graphs. Since the number of 
spanning trees grows exponentially with the number of vertices the problem becomes 
infeasible even for moderate size graphs until case is taken to do the generation 
efficiently. The most successful algorithm is by Minty. The set of all spanning trees of 0 
is divided into two classes, those that contain a specific edge (u,v) and those that do not 
contain (u,v) the spanning trees that contain (u,v) are the one consisting of (u,v) and a 
spanning tree of the graph Gu,v obtained from G by merging vertices u and v into a “super 
vertex” (removing any self-loops that might result). Other spanning trees are the spanning 
trees of the graph G (u,v), obtained by deleting edge (u,v) form G. 

 Notice that Gu,v and G – (u,v) are smaller than G. Thus successive applications of 
this basic step reduce the graphs until either all n vortices are merged together into one 
super-vortex or the graphs become disconnected and have no spanning trees. If properly 
implemented, this algorithm requires 0 ( |𝑉| + |𝐸| + |𝐸| .t) operations, Where t is the 
number of spanning trees of G. Figure 2 illustrates the process on a small example. Large 
circles denote “super-vortices”. 

2- Transitive Closure 

1      2 

 

5      4 
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Suppose that G = (V, E) is a directed graph represented as a |𝑉| × |𝑉|djacency matrix A 

= ൣ𝑎௜௝൧. We would like to compute the connectivity matrix A* = ൣ𝑎 ∗௜௝൧ defined by 𝑎 ∗௜௝ 

=1 if there is a path in G fro i to j and 𝑎 ∗௜௝= 0 if not. If we view E, the edge of G  as a 

binary relation of V, the vortices of G, then 𝐴 ∗ is the adjacency matrix for the graph 
G*=(V, E*) where E* is the transitive closure of the binary relation E. Figure 3 show a 
graph G, its adjacency matrix A, its transitive closure G* and its adjacency matrix A*. 

 The method for computing A* from A given below is due to Warshall (1962). Its 
importance as the same method with some modification is also the best-known method 
for computing the shortest distance between all pairs of vortices in a graph. 

 A* is computed from A by defining a sequence of matrices  

𝐴(ை) = ቂ𝑎௜௝
(ை)

ቃ, 𝐴(ଵ) = ቂ𝑎௜௝
(ଵ)

ቃ, … . , 𝐴|௏| = ൣ𝑎௜௝
|௏|

൧ as follows: 

𝑎௜௝
(ை)

= 𝑎௜௝, 

𝑎௜௝
(௟)

= 𝑎௜௝
(௟ିଵ)

V𝑎௜௝
(௟ିଵ)

∩ 𝑎௜௝
(௟ିଵ) 

It is not difficult to show, using induction, that 𝑎௜௝
(௟)=1 if and only if there is a path from 1 

𝜀 V to j 𝜀 V with intermediate vertices on the path chosen only from {1, 2…..,l} V. For l 
= O it is obvious. If it is true for l-1, then   

𝑎௜௝
(௟)

= 𝑎௜௝
(௟ିଵ)

V𝑎௜௝
(௟ିଵ)

∩ 𝑎௜௝
(௟ିଵ) is 1 if and only if either =1 (there is a path from I to j using 

only vertices in {1,2,……, l-1) or both 𝑎௜௟
(௟ିଵ)and 𝑎௜௟

(௟ିଵ) are 1 (then one paths from i to l 

and l to j using only vertices {1, 2, ……….., l-1}). Thus it is true for l. 

3-Shortest Paths  

 Given a directed graph G = (V, E) let 𝑢௜௝ be a weight associated with each are (i, 

j) denoting the length of (i, j). Problem of finding the shortest path between two specified 
vertices with no repeated nodes are possibly the most fundamental and important of all 
combinatorial optimization problems. 

 There does not seen to be a really good method for finding the length of a shortest 
path from a specified origin to a specified destination without, in effect, finding the 
lengths of shortest paths from the origin to all other nodes. We shall, therefore, view the 
problem so such. 

Let  

𝑢௜௝= the finite length of the arc (i, j) if there is such an are = ∞ otherwise 
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𝑢௝= the length of the shortest path form origin origin to node j. 

 If the origin is numbered 1, the rest of the nodes are numbered 2, 3, ……, n and 
there are no directed cycles of negative then u1 = 0. For each node j, j ≠ 1, there must be 
some final are (k, j) in the shortest path from 1 to j. from the principle of optimality if is 
clear that 𝑢௝ = 𝑢௞ + 𝑢௞௝ . since there are only a finite number of choices for k, i.e. k = 1, 

2, ……, j-1, j+1, ….., n, k must be a node for which 𝑢௞ + 𝑢௞௝ is as small as possible, 

therefore the shortest path must satisfy the following equations. 

𝑢ଵ= 0  

𝑢௝= ൛𝑢௞ + 𝑢௞௝ൟ, (𝑗 = 2,3, … . , 𝑛)
௞ஷ௝

௠௜௡
 

 These equations are known as Bellman-Ford equations and are necessary and 
sufficient to determine the lengths of the shortest paths. If there are no positive cycles in 
the networks then it can be shown that the solution to the Bellman-Ford equations is 
unique. As the equation an non-linear the equation do not lend themselves to solutions as 
they stand. We shall discuss cases when the solution is easy to obtain and how the 
problems of non-linearity are overcome.  

 A situation which is easy to solve is when all the arc lengths are positive. 0(|𝑉|ଶ) 
algorithm that will not be described is due to Dijkastra (1959), (Srivastava, 2016) 
Dijkstras algorithm labels the vertices of the given digraph. At each stage of the 
algorithm some vertices have permanent labels and the others temporary labels. 
Permanent label of a vertex represents the true length of the shortest path to the node. 
Temporary label represents an upper bound on the length of a shortest path. 

 Initially, the only permanently labeled node is the origin, which is given the label 
u1 = 0; each of the other nodes j is given the tentative label 𝑢௝ = 𝑎௜௝. The general step is 

as follows. Find the tentatively labeled vertex k for which is 𝑢௞ minimal.  Declare k to be 
permanently labeled, and revise the remaining temporary labels 𝑢௝  by comparing 𝑢௝  with 

𝑢௞ + 𝑎௞௝ , and replacing 𝑢௝  by the smaller of the two values. Procedure terminates when 

all nodes are permanently labeled.  

 The above method will not work if some of the edges have negative weights. This 
is because in the above method once a vertex gets a permanent label, its label cannot be 
altered. The method can be modified provided all the cycles have positive weight. The 
modification is the obvious one, i.e., at each iteration every vertex with a permanent label 
also gets a new temporary label if this temporary label turns out to be smaller than the 
final label. However, this is most inefficient. The algorithm which is discussed next is 
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duo to Floyd (1962) and find shortest paths between all pairs of vertices. It is strikingly 
similar to warshalls method for transitive closure and has the same complexity. 

Given W = [𝑊௜௝] the weight matrix of G = (V, E) we want to compute W* = [ 𝑊௜௝
∗  ], in 

which 𝑊௜௝
∗  is the length of the shortest path from I to j in G. Analogous to Warshalls 

method we define a sequence of matrices  

𝑊௟ = ቂ𝑤௜௝
(௟)

ቃ as follows. 

𝑤௜௝
(௢) = 𝑤௜௝ 

𝑤௜௝
(௟) = mi (𝑤௜௝

(௟ିଵ)
, 𝑤௜௝

(௟ିଵ)
+ 𝑤௜௝

(௟ିଵ)) 

Assuming that the weight of a nonexistent edge is ∞. The value of 𝑤௜௝
(௟) is the length of 

the shortest path from i to j with intermediate vertices chosen only from { 1, 2, …….., l} 
V. 

 An O (𝑉ଷ) implemented on of the above idea is given below in a more formal language.  

for l = 1 to |𝑉| do 

for i = 1 to |𝑉| do 

if 𝑤௜௟ ≠ ∞ then for j = 1 to  |𝑉| do 

𝑤௜௝ − min൫𝑤௜௝, 𝑤௜௟ + 𝑤௜௝൯ 

4-Travelling salesman problem  

 There are a number of combinatorial problem requiring answers to questions as 
“list all possible…..” “How many way are there to …………” which require exhaustive 
search of the set of all potential solutions.  

Generating all spanning trees of a graph is one such example.  

 One general technique for organizing such a search is back tracking. Batch 
tracking works by continually trying to extend partial solutions. At each stage of the 
search, if an extension of the current partial solution is not possible, we “back track to a 
shorter partial solution and try again. This search procedure can be represented by a tree 
called to search tree. Let us assume that the solution to the problem consists of a vector 
(𝑎ଵ, 𝑎ଶ … … ) of finite but undetermined length satisfying certain constraints. The search 
tree representing a systematic search for such a solution would look as in figure 4. 
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  start  

  

             

                    Level 1                                                  choose for a1  
     

 

 

                    Level 2                                                                   choose for a2 given a1 

 

 

                                                 Choose for a3 given a1 & a2 

           

 

     Figure 4 

The root of the tree is the null vector. Its sons are the choices of a1, and, in general the 
nodes at the level are the choices for 𝑎௞  give the choice mode for 
𝑎ଵ, 𝑎ଶ, . . . . . . . . . . . . . , 𝑎௞ିଵ as indicated by the of these nodes, in the tree of figure 4 back 
track traverses are shown by dashed lines. 

 It should not be difficult to imagine that the search for solution if the solution lies 
somewhere on the search tree can become extremely time consuming if the search is not 
directed at each stage by using some information about the nature of the problem. One 
such method of “pruning” the search tree is called branching and bounding. This method 
of pruning or preclusion is based on the assumption that each solution has a cost 
associated with it and the optimal solution (the one of least cost is to be found). In order 
for branch and bound to be applicable the costs must be well defined on partial solution; 
and for all partial solutions (𝑎ଵ, 𝑎ଶ, … … . . 𝑎௞ିଵ)  ≤ 𝑐𝑜𝑠𝑡 (𝑎ଵ, 𝑎ଶ, … … , 𝑎௞ିଵ, 𝑎௞). 

When the cots have these properties then we can discard a partial solution 
( 𝑎ଵ, 𝑎ଶ, … … . . 𝑎௞ିଵ) if its cost is greater than or equal to the cost of a previously 
computed solution. 
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 Travelling salesman problem in a complete graph is one of the problems that can 
be solved with branch and bound techniques. 

 The algorithm that we now discuss for the travelling salesman problem is due to 
Little et al. (1953). It utilizes branching and bounding and illustrates the technique of tree 
re-arrangement such that near optimal solutions are found as early as possible. The tree 
re-arrangement technique used is to split the remaining solutions into two groups at each 
stage one including a particular are and those that exclude that are. The arc is chosen 
according to the heuristic given below. 

 

 

 

 

 

 

 

Figure 5 

  

 

 

 

 

 

 

           figure 6. 

Consider the cost matrix of a 7 × 7 travelling salesman problem given in Figure 5. The 
heuristic uses the fact that if a constant is subtracted from any row or any column of the 
cost matrix, the optimal solution does not change. The cost of the optimal solution 
changes but not the path itself. The cost diminishes by the amount subtracted from the 

∞ 3 93 13 33 9 47 

4 ∞ 77 42 21 16 34 

45 17 ∞ 36 16 28 25 

39 90 80 ∞ 56 7 91 

28 46 88 33 ∞ 25 57 

3 88 18 46 92 ∞ 7 

44 26 33 27 84 39 ∞ 

∞ 3 93 13 33 9 47 

4 ∞ 77 42 21 16 34 

45 17 ∞ 36 16 28 25 

39 90 80 ∞ 56 7 91 

28 46 88 33 ∞ 25 57 

3 88 18 46 92 ∞ 7 

44 26 33 27 84 39 ∞ 
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row or the column. If such a subtraction results in each row end column containing a zero 
with all the remaining non-negative then the total amount subtracted will be a lower 
bound on the cost of any solution. In the cost matrix of figure 5, 3, 4, 16, 7, 25, 3 and 26 
can be subtracted from rows 1 through 7, and 7, 1, 4 from columns 3, 4 and 7 to result in 
the reduced matrix of A total of 96 was subtracted and so 96 is a lower bound on the cost 
of any solution. The root of the binary search tree, therefore, is labeled as follows: 

Lower bound = 96 

 Suppose we choose they are (4, 6) to split the root. Right subtree will contain all 
solutions that exclude they are (4, 6) and so we can set 𝑤ସ଺ =∞. The resulting matrix can 
that have 32 subtracted from the fourth row, and thus the right subtree has a lower bound 
of 96 + 32 = 128. As the left subtree will contain all solution that include (4, 6) we can 
delete the fourth row and the sixth column. This is because we can never go form 4 to 
anywhere else nor arrive at 6 from anywhere else. The resulting matrix is of one less 
dimension. Also in this matrix (6, 4) is no longer usable and so we set 𝑤ସ଺ =∞. We can 
also subtract 3 from the fourth row of the resulting matrix giving the left subtree a lower 
bound of 96 + 3 = 99. The binary search tree at this stage would look like. 

         Lower bound = 96 

 

 

 

 

 

 Lower bound = 99     Lower bound = 128 

 They are (4, 6) chosen to split the root because, of all arcs, it caused the greatest 
increase in the lower bound of the right subtree. This rule is used because we would 
prefer to find the solution following the left edges rather than the right edges. The left 
edge reduce the dimension of the problem whereas the right edges only add another ∞ to 
the matrix. At any stage we expand the node with the lowest lower bound. It should be 
noted that the first solution found need not be the optimal solution. This will be if some 
unexpanded node in the binary search tree has a lower bound which is smaller than the 
solution just found. The solution will be optimal if the lower bound of all unexpanded 
nodes is larger than the cost of the solution. A partial search tree for the travelling 
salesman problem discussed above is given below: 

All Solution 

Solution with 
(4, 6) 

 

Solution without 
(4, 6) 
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 Lb = 96 

 

 

 

 

 

 Lb = 99     Lb = 128 

 

 

 

 

 Lb = 99      Lb = 117 

 

 

Lb = 112      Lb = 125 

 

Experimental evidence indicates that the number of nodes examined is 0(1.26௡) for 
random n × n matrices. 

Conclusions 

Algorithmic graph theory is a   fast-growing field. Number of good books has appeared. 
Some of these are listed in reference given below. What has been explored here does not 
eve probe the surfaces of the known results extensively. The interested reader will find it 
fruitful to go to the sources and discover for himself this wealth of knowledge. 
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