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Abstract

Tachibana (1967), studied on the Bochner curvature tensor. Sinha and Singh (1971), studied on
Kaehlerian spaces with recurrent Bochner curvature. Singh (1973), studied on a Kaehlerian space
with recurrent holomorphic projective curvature tensor. Singh (1979), studied on FEinstein —
Kaehlerian Conharmonic recurrent space. Negi and Rawat (1997) studied theorems on Kaehlerian
spaces with recurrent and symmetric Bochner curvature tensor. Rawat and Prasad (2008), studied
and defined some recurrent and symmetric properties in an almost Kaehlerian space. Rawat and
Uniyal (2010), studied on infinitesimal conformal and projective transformations of K-space and
Kaehlerian recurrent space. Further, Rawat, Kumar and Uniyal (2012), studied on hyperbolically
Kaehlerian bi-recurrent and bi-symmetric spaces. In the present paper, we have studied on Einstein-
Sasakian holomorphically conformal bi-recurrent and bi-symmetric spaces and several theorems
have been established and proved therein. The necessary and sufficient condition for an Einstein —
Sasakian space to be Einstein-Sasakian bi-recurrent and bi-symmetric has been investigated.
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1. Introduction
An n-dimensional Sasakian space “ S,,” ( or, normal contact metric space) is a Riemannian space,
which admits a unit killing vector field n’ satisfying

Vi Vink = nj Gix - Mk 9ij (LD
It is well known that the Sasakian space S,, is orientable and odd dimensional. Also, we know that
an n-dimensional Kaehlerian space K, is a Riemannian space, which admits a structure tensor field
F[' satisfying (Yano,1965)

Fl'Fi=-8} . (L2)

Fij =- Fu, (Fjj=F¢ gij), oo (13)
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and
F =0, (14

where the comma (, ) followed by an index denotes the operation of covariant differentiation
with respect to the metric tensor gij of the Riemannian space.

Thus both S, and K, are Riemannian spaces satisfying the properties of a Riemannian spaces.

The Riemannian curvature tensor field Rl-hj x 1s given by

h h h q h q
h = . —_— . —_—
R"f"_a‘{jk} af{ik}+{iq}{jk} {jq}{ik}’ - (1)
where 0; :_aii and {x'} denotes the real local coordinates.

The Ricci tensor and the scalar curvature in S, are respectively given by
_pl _ ij
Rij _Rlij and R = Rijgl]

It is well known that these tensors satisfies the following identities

fita = Riki — Rk ... (1.6)
R; =2Ri, .. (L7)
Ff Rgj = — Ry Ff? .. (1.8)
and
F& R, =REF] .. (1.9

The holomorphically conformal (Bochner), holomorphically projective and Conharmonic curvature
tensors are respectively given by
1
Kby = Rl + i (R 8! — Ry 8 + g R} — gjx R + Suc Ff* = Sje F* + Fiy S| —
F SI+ 28 F' + 2F; S{t) — — gjk 8! + Fy F!' — Fy F' + 2F;; F),
... (1.10)

R . sh
(n+2)(n+4) (9 5;

1
Pl = Ry + o) (R 6] — Rj 8 + Sy F' — S F* + 28 Ff), ... (1.11)
and

1
The = Rl + D (R 8" = Rjxe ' +guc R}' — gji R + Suc F* = Sjpe Fl* + Fy S =

Fy S+ 25;; F' + 2F; Sp), .(1.12)

where,

Sij = F{'Rgj |
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Einstein — Space- Einstein space is defined as a space, which is homogeneous relative to the Ricci-

tensor R;; . That is to say, if Rij = Ag;j atevery point of a space, then that space is
called Einstein space. Inner multiplication by g¥ shows that

R=A1An or, 1== i.e. Ry R
n g,;]' n
Consequently R = %gij ... (1.13)

Hence, the space is an Einstein —space, if ~ R;; = nl Rg;j , atevery point of the space.

Let us suppose that a Sasakian space is an Einstein —one, then the Ricci tensor satisfies
Rij=7=gij: Rq=0 . (1.14)
at every point of the space . From which, we obtain
Rijq =0, Sija =0 and Sy==Fy . ... (L15)
We shall call an Einstein-Sasakian space or, in brief, by an E-S* space.

If the Sasakian space is Einstein one, then the Bochner curvature tensor, Projective curvature
tensor and Conharmonic curvature tensor are respectively reduces to the forms

* l]k Rl]k + n(n+2)(glk - gjk 51h+ Fik th - Ljg Fih+ ZFU F]?), (116)
* Pl =Rl + n(n+2)(91k = g O + Fy F' — Fy B+ 2F; FY), ... (1.17)
and
« The = Rl + s (gudf = g8+ Fu ' = Fy B+ 2F; FY), - (L18)

Remark (1.1) - From (1.16) and (1.17), it is clear that in an E-S* space =

h
ijk and *
coincides.

h
ijk

Definition (1.1) - A Sasakian space is a space of constant holomorphic sectional curvature , if the
tensor * Ki’}k given by (1.16) vanishes identically.

Let Rpiji be the component of the Riemannian curvature tensor. We define a bi-recurrent space as a

non-flat Riemannian space 1},  the Riemannian curvature tensor of which satisfies the relation of
the form

Rhiji,ap = Aab Rnij .. (1.19)

where A4, is a non-zero tensor of second order, called the tensor of recurrence or,
recurrence tensor .

Definition (1.2) - A Sasakian space is said to be Sasakian bi-recurrent space, if the curvature
tensor satisfy the condition
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Rlkap — Aap Rl =0, .. (1.20)
for some non-zero tensor Agp,
The space is said to be Sasakian Ricci bi-recurrent (or, semi bi-recurrent), if it satisfies the condition
Rijap = Aap Rij = 0, .. (121
Multiplying (1.21) by g¥ , we get
Rap — Agp R =0. .. (1.22)

Remark (1.2)- From (1.20) and (1.21), it follows that every Sasakian bi-recurrent space is
Sasakian — Ricci bi-recurrent, but the converse is not necessarily true.

An immediate consequence of (1.19) and Bianchi identity
Rpijap + Rhikajp + Rnuiajrr =0
Gives for a bi-recurrent space
Aab Ruijic + Ajp Ruika + Akp Rhiaj = 0. o (1.23)
In the case
Rhijiap =0

(1.19) and (1.23) are satisfied for 4;; =0  and the space may or may not satisfy (1.23)
for some non-zero tensor A;; .

2. Einstein —Sasakian bi-recurrent spaces
Definition (2.1) - An E-S* space satisfying the condition
* Kif]l'k,ab — Aab * Ki}]I:k =0, eee (21)

for some non-zero tensor A, , is called an E — S* space with bi-recurrent Bochner curvature
tensor.

Definition (2.2) - An E-—S* space satisfying the condition
* Plikap = dab * Pl =0, o (22)

for some non-zero tensor A, , is called an E — S* space with bi-recurrent holomorphically
projective curvature tensor.

Definition (2.3) - An E—S* space satisfying the condition

* h _ h _
Tiikap = Aap *Tiji =0, (2.3)
for some non-zero tensor A, , is called an E — S* space with bi - recurrent Conharmonic
Curvature tensor.

Theorem (2.1) - A necessary and sufficient condition for an E — S* space to be E — S* space
with bi - recurrent holomorphically Conformal ( Bochner ) curvature tensor is that the space be
Sasakian bi- recurrent .
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Proof: Differentiating (1.16) covariantly with respect to x? , and again differentiating the result thus
obtained covariantly w.r.to x? , we have

* Kl .ap = Rlsie.ap + n(n+2)(glk — g6+ Fu B! — Fy Fl + 2F; FE), .. (24)
Multiplying (1.16) by  A,, and subtracting the result so obtained from (2.4), we get

Rap — Agp R
Kk ab = Aab * Kl = Rl ap — Aap Ry + % (g6 — gjx 6+ Fy F' —

Fy FM + 2F; FF), .. (2.5)

If the space is an E — S* space with bi-recurrent Bochner curvature tensor, then the above
relation reduces to (1.20), which shows that the space is Sasakian bi-recurrent. Hence the condition is
necessary.

Conversely, let the space be Sasakian bi-recurrent, then (2.5 ) in view of ( 1. 20) gives
*Klk ab — Aap * Kl =0,

This shows that the space is Einstein — Sasakian space with bi-recurrent Bochner curvature tensor.
Hence the condition is sufficient. This completes the proof of the theorem.

Theorem (2.2)- A necessary and sufficient condition for an E — S* space to be an E — S*
Conharmonic bi-recurrent is that the space be an E — S* space with bi-recurrent holomorphically
conformal (Bochner) curvature tensor.

Proof- Differentiating (1.18) , covariantly with respect to x%, and again differentiating the result
thus obtained covariantly w.r.to x? | we obtain
b = RE 2300 — gjkO!+ Fy F* — Fy FP + 2F; Fl 2.6
* Tijkab = Rijk,ap + n(n+4)(91k 9jk 0i + Fic Fj ik F'+ 2F5 ), ... (2.6)

Multiplying (1.18 ) by A,, and subtracting the result thus obtained from (2.6) , we have
2(Rap — Aap R
T ab = Aab * Tl = Rl ap — Aan Rl + % (g6 — 9jxd! + Fy F' —
Fy F' + 2F;; F}Y), @27

Now, using the fact R, — A4, R =0, the above equation (2.7) reduces to the form

>kTi}}k,ab - /1 T jk — Ruk ab Aab thjk (2‘8)
From (2.5) and (2.8) , we get
Tl]k ab — Aab * T]k =x* Kl]k ab Aab * Ki}]l'k ’ (2-9)

If the space is an E — S* Conharmonic bi-recurrent, then (2.9) in view of (2.3) gives

Kl]k ab Aab * K]k =0, ...(2.10)
which shows that the space is E — S* space with bi-recurrent holomorphically Conformal (Bochner )
curvature tensor. Hence the condition is necessary
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Conversely, let the space be an E — S* space with bi-recurrent holomorphically Conformal
(Bochner) curvature tensor, then (2.9) in view of (2.1), Reduces to
T ab— Aap * Tl =0,

Which shows that the space is an E — S* Conharmonic bi-recurrent space. Hence, the condition is
sufficient . This completes the proof of the theorem

Theorem (2.3) - A necessary and sufficient condition for an E — S* space to be an Sasakian bi-
recurrent space is that the scalar curvature be equal to zero.

Proof-Suppose that an E — S* space is Sasakian bi-recurrent space. Making use of equations (1.14),
(1.15) and (1.18) in (2.3), we get

h 2R h h
RZ‘k,ab = Aap [Ry, + m(gik5j — 96 + Fy Fjl — Fjy F! +
2F; Fb)l, NCAT)

Since an E — S* space is Sasakian bi recurrent, then (2.11) reduces to

n(:i4)(gik 8 — g, 00+ Fy FI — Fy Fl + 2F, FZ) =0, 2.12)
which gives R =0, i.e. the scalar curvature is zero.
Conversely, if an E — S* space satisfies R =0, then (2.11), reduces to
thjk,ab — Aap Rihjk =0,

which gives that the space is Sasakian bi-recurrent . This completes the proof of the theorem.
Theorem (2.4)- If a bi-recurrent space be Einstein, then the Ricci-curvature tensor vanishes.

Proof: Considering (1.23), transvecting by g™ g , we get
Aav R— Ajp 97 Rig — My 9™ Rpg =0,
ie. Aap R— 224 g¥ Rip=0 .. (213)
Let a bi-recurrent space be an Einstein one. Then making use of (1.13) in (2.13) , we obtain
Aap R— 22, gY % Jia = 0,
Whence (n-2) 4,5 R=0.

Since A, #0 and n>2, R=0, which is equivalent in an Einstein space to saying that
Rij = 0.

This completes the proof

3. EINSTEIN- SASAKIAN BI - SYMMETRIC SPACES

Definition (3.1) -A Sasakian space satisfying the relation
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ng ab =0, or, equivalently  Rjjap =, . (3.1

is said to be Sasakian bi- symmetric space and it is called Ricci -bi-symmetric ( or, semi -bi-
symmetric ) , if it satisfies

Rij,ab = 0, (32)
Multiplying (3.2) by g“, we have
Ra =0. .. (33

Remark (3.1)- From (3.1) and (3.2) , it follows that every Sasakian bi-symmetric space is
Sasakian Ricci - bi-symmetric, but the converse is not necessarily true

Definition (3.2) - An E — S* space satisfying the relation
K ap = 0, or, equivalently * Kipap o, .. (34

is called an E — S* space with bi-symmetric Bochner curvature tensor .

Definition (3.3) - An E — S* space satisfying the relation
*Pi}}k'ab =0, or, equivalently * Pjjiap =, ... (3.9

is called an E — S* space with bi-symmetric holomorphically projective curvature tensor.

Definition (3.4) - An E — S* space satisfying the relation
* Tﬁk ab =0, or, equivalently * Ty ap =0, ... (3.6
iscalled an E — S* space with bi-symmetric Conharmonic curvature tensor

Theorem (3.1) - A necessary and sufficient condition for an E — S* space to be E — S* space
with bi-symmetric holomorphically conformal ( Bochner ) curvature tensor is that the space be
Sasakian bi-symmetric.

Proof- Sasakian bi-symmetric space and E — S* space with bi-symmetric holomorphically
Conformal ( Bochner ) curvature tensor is given by ( 3.1 ) and ( 3.4).

Therefore, the statement of the above theorem follows in view of (3.1), (3.2), (3.4) and (2.4).

Theorem (3.2) - A necessary and sufficient condition for an E — S* space to be an E — S*
Conharmonic bi - symmetric is that the space be an E — S* space with bi-symmetric
holomorphically conformal ( Bochner ) curvature tensor .

Proof- The E- S* Conharmonic bi-symmetric space and E —-S* space with bi-symmetric
holomorphically conformal (Bochner) curvature tensor are given by (3.6) and (3.4).

Therefore, the statement of the above theorem follows in view of (3.4), (3.6) and (2.6).

Theorem (3.3)-A necessary and sufficient condition for an E — S* space to be a Sasakian bi-
symmetric space is that the scalar curvature be equal to zero.
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Proof- The Sasakian bi-symmetric space is given by (3.1). The statement of the above theorem
follows in view of (3.1), (3.2), (2.1) and (2.12).
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