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Abstract 

In this paper, we characterize semi-pseudo Ricci symmetric spacetimes thriving with Gray‟s 

decomposition as well as generalized Robertson-Walker spacetimes. For semi pseusdo–Ricci symmetric 

spacetimes, we determine the form of the Ricci tensor in all  ( )-invariant subspaces provided by Gray‟s 

decomposition of the gradient of the Ricci tensor. In three cases we obtain that the Ricci tensor is in the 

form of perfect fluid and in one case the spacetime becomes a generalized Robertson-Walker spacetimes. 

Finally, it is shown that a semi-pseudo Ricci symmetric generalized Robertson-Walker spacetime is a 

perfect spacetime. 

Keywords and Phrases: Pseudo Ricci-symmetric, conformal curvature tensor, spacetime,Gray‟s 

decomposition 

1. Introduction 

Lorentzian geometry is the mathematical framework that supports some of the most important theories in 

GR and string theory. From a purely mathematical point of view, a Lorentzian manifold   is a smooth 

manifold endowed with a symmetric non degenerate bilinear form  , called the metric of signature 

(          ) that is, index of   is one. In general, a Lorentzian manifold (    ) may not have a 

globally timelike vector field. If (    ) admits a globally timelike vector fields, it is called a time-

oriented Lorentzian manifold, physically known as spacetime. Several authors have investigated 

spacetime in various ways, such as (Blaga, 2020; Chaubey, Suh ad De, 2020; Duggal and Sharma, 2005; 

Hazmetal, 2023) and also various others. 

A semi-pseudo Ricci-symmetric (Tarafdar etal. 1995) and denoted by (    ) , if the Ricci tensor     of 

the type (0, 2) of the manifold is non-zero and satisfies the relation  

                         (      ) (   )   ( )    (   )   ( )    (   )                                                     (1.1) 

where   denotes the covariant differentiation with respect to the metric  ,   is a non-zero one form and   

is a vector field equivalent to  

                             ( )   (   )                                                                                                (1.2) 
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for all  . The manifold reduces to a Ricci-symmetric manifold if 1-form   is zero. Several authors have 

investigated semi-pseudo Ricci-symmetric manifold. 

Changing   and   in (1.1) and then subtracting these two equations, we obtain  

                         (      ) (   )  (      ) (   )   ( )    (   )   ( )    (   ).                      (1.3) 

Contracting with respect to   and   in (1.3), we get  

                            ( )      (   )     ( )                                                                                     (1.4) 

The conformal curvature tensor in a Lorentzian manifold (    ),    , is given by 

                          (   )   (   )  
 

   
,   (   )     (   )   (   )    (   )  - 

                                              
 

(   )(   )
, (   )   (   ) -,                                                          (1.5) 

where   is the Ricci operator defined by     (   )   (    ) and   is the scalar curvature. 

A Lorentzian manifold   of dimension     endowed with the Lorentzian metric   defined by  

                                (   )    ( )    
 ( )   

    
 , 

where   is the time and    
 ( ) is the metric tensor of a Riemannian manifold   , is a generalized 

Robertson-Walker (briefly, GRW) is a spacetime. In other words, a GRW spacetime is the warped 

product       , where   is an open interval of the real line,   is a smooth warping function such that 

    and    is an (   )-dimensional Riemannian manifold (Alias, Romero and Sanchez, 1995). 

Lorentzian manifolds with the Ricci tensor  

                              (   )   ̈  (   )   ̈  ( )  ( ),                                                                        (1.6) 

where  ̈ and  ̈ are scalars and   is a unit timelike  vector field corresponding to the one-form  , are called 

perfect fluid spacetime (PFS). 

The energy momentum tensor (EMT)   for a PFS has the following form (Neill, 1983) 

                            (   )    ̈  (   )  ( ̈   ̈)  ( )  ( ),                                                                 (1.7) 

where  ̈ and  ̈ represents energy density (ED) and isotropic pressure (I.P). 

Einstein field equation (EFE) without cosmological constant is as follows: 

                               (   )  
 

 
  (   )     (   ),                                                                            (1.8) 

where   is the gravitational constant. 

The present paper is organized as follows: 

After introduction, in section two, we investigate all the seven cases of Gray‟s decomposition of 

(    ) . The study of (    )  with GRW spacetime is presented in section 3. 

2. Gray’s decomposition and Semi-pseudo Ricci symmetric spacetimes 

Considering the action of the orthogonal group on the space of the tensors with the symmetries of the 

covariant derivative of the Ricci curvature, Gray decomposed such space into irreducible components 
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(Gray, 1978). Gray proposed that the covariant derivative of the Ricci tensor, that is      , can be 

decomposed into  ( )-invariant terms. According to him, the covariant derivative of the Ricci tensor can 

be converted into  ( )-invariant term as follows (Mantica, Molinari, Suh and Shenawy, 2019) 

                          (      ) (   )   (   )  
  (    )

(   )(   )
  (   )   

                                                        
(   )(    )

 (   )(   )
  (   )  

(   )(    )

 (   )(   )
  (   ),                                    (2.1) 

for all vector fields  , ,   and  (   )   (   )  is a tensor with zero trace that can be written as a 

sum of its orthogonal components: 

                           (   )  
 

 
, (   )   (   )   (   ) -         

                                              
 

 
, (   )   (   ) -  

 

 
, (   )   (   ) -.                              (2.2) 

The decompositions (2.1) and (2.2) yield  ( )-invariant subspace, which is characterized by linear 

invariant equations in (      ) (   )  

Therefore, the relation between (      ) (   ) and the divergence of the conformal curvature tensor   

can be given by the equation  

                        (     )(   )   .
   

   
/ , (   )   (   ) -.                                (2.3) 

The subspace in Gray‟s decomposition are as follows: 

(i) The trivial subspace is given by (     ) (   )     

(ii) The subspace   is characterized by  (   )   , i.e, 

                   (     ) (   )  
  (    )

(   )(   )
  (   )  

(   )(    )

 (   )(   )
  (   )  

                                                   
(   )(    )

 (   )(   )
  (   ).                                                                   (2.4) 

Manifolds satisfying equation (2.4) are called Sinyukov manifolds (Sinyukov, 1979) & 

(Formella, 1989). 

(iii) The orthogonal complements    are characterized by       

                   (      ) (   )  (      ) (   )  (      ) (   )                                              (2.5) 

which yields that the scalar curvature   is constant. Also, the Ricci tensor is killing tensor 

(Tachibana, 1969) if equation (2.5) satisfied. 

(iv) In the subspaces   and    the Ricci tensor is of Codazzi type i.e, 

                       (      ) (   )  (      ) (   )                                                                            (2.6) 

(v) The Ricci tensor fulfills the following cyclic condition in the subspace   ⨁ , 

            (      ) (   )  (      ) (   )  (      ) (   )    

               
  ( )

(   )
  (   )   

  ( )

(   )
  (   )   

  ( )

(   )
  (   )                                                (2.7) 

that is, the Ricci tensor is conformal killing (Rani, Edgar and Barnes, 2003) 

(vi) The Ricci tensor fulfills the following Codazzi condition in the subspace  ⨁   , 
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                    (      ) (   )  (      ) (   )  
  ( )

 (   )
  (   )  

  ( )

 (   )
  (   )                      (2.8) 

which given        . 

(vii) In the subspace  ⨁   , the scalar curvature is covariant constant. 

Let us consider each of these seven cases separately. 

Case (i): The trivial subspace (      ) (   )   . 

Theorem 2.1. An (    )  spacetime does not belong to the trivial subspace. 

Proof: Since (      )   , then from the definition of (    )  the one-form   must vanish at any point 

of the manifold, which contradicts the definition of (    ) . 

Case (ii): The subspace   where  (   )     

Theorem 2.2. If an (    )  spacetimes belongs to the subspace  , then the spacetime is a perfect fluid 

spacetime. 

Proof: The Ricci tensor satisfies the relation  ̃(   )    in the subspace   and hence from the relation 

(2.3) we obtain          

Thus, we have 

                        (      ) (   )  (      ) (   )  
 

 (   )
,   ( )  (   )    ( )  (   )-.           (2.9) 

Using (1.1) and (1.4) in (2.9), we get 

                        ( )    (   )   ( )    (   )  
 

   
 , ( )  (   )   ( )  (   )    

                                                                                  
 

   
,   (   ) (   )     (   ) (   )-.       (2.10) 

Now, putting       in (2.10) and using  ( )    , we have  

   (   )   
 

   
   ( )                                                                          (2.11) 

where       (   ). 

Again, putting   for   in (2.10) and using (2.11), we get 

                           (   )  .
   

   
/   (   )  0

 (   )    

(   )(   )
1   ( )  ( )                                                 (2.12)      

This implies that an (    )  spacetime is a perfect fluid spacetime PFS. 

Case (iii): The subspace   is characterized by the condition (2.5). 

Theorem 2.3: If an (    )  spacetime belongs to the subspace  , then the associated one form are 

 ( )      

Proof: From (1.1) and (2.5), we have  

                         ( )    (   )   ( )    (   )   ( )    (   )                                                (2.13)  

Walkar‟s Lemma (Walker, 1950) is now listed as below: 
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Lemma: If    ,    are numbers satisfying        ,                        for               , 

then either all     are zero or all     are zero.  

As    (   )   , then according to Walker‟s Lemma from (2.1), we have   ( )     

Case (iv): In this subspace, the Ricci tensor is of Codazzi type. 

Theorem 2.4: If a (    )  spacetime belongs to the subspace   and   , then the spacetime is a Ricci 

simple spacetime. 

Proof: If a (    )  belongs to   and   , then 

                         (      )(   )  (     )(   ).                                                                                 (2.14) 

Using (1.1) in (2.14), we get 

                           ( )   (   )   ( )   (   ).                                                                               (2.15) 

Putting   for   in above equation, we get 

                             (   )    ( )   (   ),                                                                                    (2.16)  

Contracting   and   in (2.15), we obtain 

                            ( )      (   )                                                                                                    (2.17) 

Using (2.17) in (2.16), we get  

                              (   )       ( ) ( )       

which implies that the spacetime is Ricci simple (Mantica and Molinan, 2017). 

It is known that  

                         (     )(   )  .
   

   
/ ,*(      )(   )  (      )(   )+   

                                                        
 

 (   )
* (   )  ( )   (   )  ( )+-,                                   (2.18) 

but in one case Ricci tensor satisfies (2.14). Hence from (2.14) and (2.18) gives        , provided 

scalar curvature is constant. 

Mantica, Suh and De, (2016) proved the following theorem: 

Theorem A: If an  -dimensional Lorentzian manifold (    ),    , with the Ricci tensor is of the 

form    (   )      ( )  ( ) satisfies the curvature condition        , then (    )  is a GRW 

spacetime. 

Theorem 2.5: If an (    )  spacetime belongs to the class   and   , then the spacetime becomes a 

GRW spacetime. 

Proof: Due to Theorem (2.4) and Theorem A, we can prove theorem (2.5). 

Case (v): In this subspace, the Ricci tensor satisfies (2.7). Mantica etal. (2019) proved that the subspace 

 ⨁  and   are equivalent. In this circumstances, we reached          Therefore, the result is the 

same as in theorem (2.2). 
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Case (vi): Let (    )  belong to  ⨁ . In this case, we get          So, we can state the same result 

as in theorem (2.2). 

Case (vii): In the subspace  ⨁ , the scalar curvature is covariant constant. 

Theorem 2.6: If an (    )  spacetime belongs to the subspace  ⨁ , then the velocity vector field   

is an eigen vector corresponding to the eigen value  . 

Proof: Since the scalar curvature tensor   is constant, then equation (1.4) gives     (   )     (   )  

This proves the proof. 

3. (    )  GRW spacetimes  

In this section we characterize semi-pseudo Ricci symmetric GRW spacetimes. Mantica and Molinari 

(2017) proved that a Lorentzian manifold of dimension     is a GRW spacetime if and only if it admits 

a unit timelike torse forming vector field. That is         (        ). 

Theorem 3.1: A (    )  GRW spacetime is a perfect fluid spacetime. 

Proof: We assume that the   (    )  spacetime be a GRW spacetime. Then we have 

                         (    )( )    , (   )   ( )  ( )- and     (   )     (   ),                            (3.1) 

for some smooth function     and   on  . 

Now,  

                         (      )(   )        (   )      (     )     (     )                                      (3.2) 

Using (3.1) in (3.2), we get  

                         (      )(   )   ( )  ( )       (   )       (   )                                          (3.3) 

where   ( )   (       ). 

Combining equations (1.1) and (3.1), we get  

                          (      )(   )     ( ) ( )   ( )   (   )                                                           (3.4) 

Comparing equations (3.3) and (3.4), we obtain 

                              ( ) ( )   ( )   (   )   ( )  ( )       (   )       (   )                (3.5) 

Setting   for   in above equation and using   ( )    , we find  

                            ( )      ( )  ( )     ( )                                                                                  (3.6) 

Contracting   and   in (3.5), we get  

                            ( )                 ( )                                                                              (3.7) 

Equation (3.6) and (3.7) gives 

                               
 , ( )  )

    
.                                                                                                              (3.8) 

From (3.1) and (3.8), we have  
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                                 (   )  
 , ( )  -

(    )
  (   )                                                                                   (3.9) 

This means that   is an eigen vector corresponding to the eigen vector  
 , ( )  -

(    )
. 

In view of equation (3.5) and (3.6), we get 

                               (   )   
 

   ( )
 ,   (   )   ( )  ( )  ( )-                                                (3.10) 

Putting the value of   from (3.8) in (3.10), we get 

                                (   )  
 

    
,   (   )    ( )  ( )  ( )-                                                   (3.11) 

Moreover, if     then (3.8) gives      

But   can not be zero,      Hence a (    )  GRW spacetime is a perfect fluid spacetime (PFS). 
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