Study on Sasakian space with recurrent and symmetric Bochner CurvatureTensorof Pth order K. S. Rawat and Sandeep Chauhan Department of Mathematics H.N.B.Garhwal University Campus Badshahi Thaul, Tehri (Garhwal)-249199 Uttarakhand, India. Email: drksrawathnbgu@gmail.com #### Abstract Okumura (1962), studied some remarks on space with a certain contact structure. Singh (1971), studied on Kaehlerian spaces with recurrent Bochner curvature tensor. Negi and Rawat (1994), studied some bi-recurrence and bi-symmetric properties in a Kaehlerian space. Rawat (2002), studied on Geometry of locally product almost Tachibana space. Rawat and Dobhal (2009), studied on Einstein–Kaehlerian s-recurrent space. Rawat and Kumar (2009), studied on curvature collineations in a Tachibana recurrent space. Further, Rawat and Prasad (2010), studied on holomorphically projectively flat parabolically Kaehlerian space. In the present paper; we have been studied on Sasakian space with recurrent and symmetric Bochner curvature tensor of pth order. Several theorems also have been established and proved therein. **Key Words:** Sasakian space, recurrent space, symmetric space, Bochner curvature tensor. 1. **Introduction:** An n-dimensional Sasakian space " S_n " (or, normal contact metric space) is a Riemannian space, which admits a unit killing vector field η^i satisfying (Okumura,1962): $$\nabla_i \nabla_j \eta_k = \eta_j g_{ik} - \eta_k g_{ij} \tag{1.1}$$ It is well known that the Sasakian space is orientable and odd dimensional. Also, we know that an n- dimensional Kaehlerian space " K_n " is a Riemannian space which admits structure tensor field F_i^h satisfying (Yano, 1965) the following conditions: $$F_i^h F_h^i = -\delta_i^i \tag{1.2}$$ $$F_{ij} = -F_{ji}, (F_{ij} = F_i^a g_{aj})$$ (1.3) and $$F_{i,j}^{h} = 0, (1.4)$$ where the comma (,) followed by an index denotes the operation of covariant differentiation with respect to the metric tensor g_{ij} of the Riemannian space. Thus, both S_n and K_n are Riemannian spaces satisfying the properties of a Riemannian space. The Riemannian curvature tensor field R_{ijk}^h is given by $$R_{ijk}^{h} = \partial_{i} \begin{Bmatrix} h \\ jk \end{Bmatrix} - \partial_{j} \begin{Bmatrix} h \\ ik \end{Bmatrix} + \begin{Bmatrix} h \\ il \end{Bmatrix} \begin{Bmatrix} l \\ jk \end{Bmatrix} - \begin{Bmatrix} h \\ jl \end{Bmatrix} \begin{Bmatrix} l \\ ik \end{Bmatrix}, \tag{1.5}$$ where $\partial_j = \frac{\partial}{\partial x^i}$ and $\{x^i\}$ denotes real local coordinates. The Ricci- tensor and scalar curvature in S_n are respectively given by $$R_{ij} = R_{aij}^a$$ and $R = R_{ij}g^{ij}$ If we define a tensor $$S_{ij} = F_i^a R_{aj}, (1.6)$$ Then, we have $$S_{ij} = -S_{ji} , \qquad (1.7)$$ $$F_i^a = -S_{ia}F_j^a (1.8)$$ and $$F_i^a S_{jk,a} = R_{ji,k} - R_{ki,j} (1.9)$$ It has been verified by (Yano [4]), that the metric tensor g_{ij} and the Ricci tensor denoted by R_{ij} are hybrid in I and j . Therefore, we get $$g_{ij} = g_{sr} F_i^s F_j^r (1.10)$$ and $$R_{ij} = R_{sr} F_i^s F_j^r (1.11)$$ The Bochner curvature tensor with respect to local coordinate system is given by $$K_{hijk} = R_{hijk} - \frac{1}{(n+2)} \left(R_{ij} g_{hk} + R_{hi} g_{jk} + g_{ij} R_{hk} + g_{hi} R_{jk} \right) + \frac{R}{2(n+1)(n+2)} \left(g_{ij} g_{hk} + g_{hi} g_{jk} \right)$$ (1.12) If we put $$L_{ij} = R_{ij} - \frac{R}{4(n+1)} g_{ij} \tag{1.13}$$ and $$M_{ij} = F_i^a L_{aj} = S_{ij} - \frac{R}{4(n+1)} F_{ij}$$ (1.14) Then (1.12), in view of (1.13) reduces to the form $$K_{hij} = R_{hijk} - \frac{1}{(n+2)} \left(L_{ij} g_{hk} + L_{hi} g_{jk} + L_{hk} g_{ij} + L_{jk} g_{hi} \right)$$ (1.15) # 2. Sasakian Recurrent Spaces of pth Order **Definition (2.1):** A Sasakian space with Riemannian curvature tensor is said to be Sasakian recurrent space of pth order, if it satisfies $$R_{ijk,ab...n}^{h} - \lambda_{ab...n} R_{ijk}^{h} = 0, (2.1)$$ For some non-zero recurrence tensor $\lambda_{ab...p}$. The space is said to be Sasakian Ricci-recurrent space of pth order, if it satisfies the condition $$R_{ij,ab...p} - \lambda_{ab...p} R_{ij} = 0, \qquad (2.2)$$ Multiplying (2.2) by g^{ij} , we have $$R_{,ab\dots p} - \lambda_{ab\dots p}R = 0. \tag{2.3}$$ **Remark (2.1):** From (2.2), it follows that every Sasakian recurrent space of pth order is Ricci recurrent space of pth order, but the converse is not necessarily true **Definition (2.2):** A Sasakian space satisfying the condition $$K_{hijk,ab...p} - \lambda_{ab...p} K_{hijk} = 0. (2.4)$$ for some non-zero tensor $\lambda_{ab...p}$, will be called a Sasakian space with recurrent Bochner curvature tensor of pth order. **Note:** Now in whole calculation we will take α in place of ab.....p for convenience. **Theorem (2.1):** If a Sasakian space satisfies any two of the following Properties: - (i) The space is Sasakian recurrent space of pth order, - (ii) The space is Sasakian Ricci-recurrent space of pth order, (iii)The space is a Sasakian space with recurrent Bochner curvature tensor of pth order, it must also satisfy the third. **Proof:** Sasakian recurrent space of pth order, Sasakian Ricci-recurrent space of pth order and a Sasakian space with recurrent Bochner curvature tensor of pth order are respectively characterized by (2.1), (2.2) and (2.4). Differentiating (1.15) covariantly w. r. to x^{α} , we get $$K_{hijk,\alpha} = R_{hijk,\alpha} - \frac{1}{(n+2)} \left(L_{ij,\alpha} g_{hk} + L_{hi,\beta} g_{jk} + L_{hk,\alpha} g_{ij} + L_{jk,\alpha} g_{hi} \right)$$ (2.5) Multiplying (1.15) with λ_{α} and subtracting the result thus obtained from (2.5), we have $$K_{hijk,\alpha} - \lambda_{\alpha} K_{hijk} = R_{hijk,\alpha} - \lambda_{\alpha} R_{hijk} - \frac{1}{(n+2)} \left[(L_{ij,\alpha} - \lambda_{\alpha} L_{ij}) g_{hk} + (L_{hi,\alpha} - \lambda_{\alpha} L_{hi}) g_{jk} + (L_{hk,\alpha} - \lambda_{\alpha} L_{hk}) g_{ij} + (L_{jk,\alpha} - \lambda_{\alpha} L_{jk}) g_{hi} \right]$$ $$(2.6)$$ The statement of the above theorem follows in view of (1.13), (2.1), (2.2), (2.4) and (2.6). **Theorem (2.2):** The necessary and sufficient condition for a Sasakian space to be Sasakian Ricci-recurrent space of pth order is that $$K_{hijk,\alpha} - \lambda_{\alpha} K_{hijk} = R_{hijk,\alpha} - \lambda_{\alpha} R_{hijk}$$. **Proof:** Let the Sasakian space be Sasakian Ricci-recurrent space of pth order, then the relation (2.2) is satisfied. Since the space is Ricci-recurrent space, then the equation (2.6) in view of (2.1) reduces to $$K_{hijk,\alpha} - \lambda_{\alpha} K_{hijk} = R_{hijk,\alpha} - \lambda_{\alpha} R_{hijk}$$ (2.7) Conversely, if in a Sasakian space, equation (2.7) is satisfied, then from (2.6), we have $$(L_{ij,\alpha} - \lambda_{\alpha}L_{ij})g_{hk} + (L_{hi,\alpha} - \lambda_{\alpha}L_{hi})g_{jk} + (L_{hk,\alpha} - \lambda_{\alpha}L_{hk})g_{ij} + (L_{jk,\alpha} - \lambda_{\alpha}L_{jk})g_{hi} = 0.$$ (2.8) Which yields with the help of (1.13) $$R_{ij,\alpha} - \lambda_{\alpha} R_{ij} = 0.$$ i.e., the space is Sasakian Ricci-recurrent space of \boldsymbol{p}^{th} order. **Theorem (2.3):** Every Sasakian recurrent space of pth order is a Sasakian space with recurrent Bochner curvature tensor of pth order. **Proof:** If the space is Sasakian recurrent space of p^{th} order, equations (2.1) and (2.2) are satisfied, then (2.6) in view of (2.1), (2.2) and (1.13) reduces to $$K_{hiik,\alpha} - \lambda_{\alpha} K_{hiik} = 0$$ which shows that the space will also be Sasakian space with recurrent Bochner curvature tensor of pth order. ## 3. Sasakian Symmetric Spaces of pth Order **Definition (3.1):** A Sasakian space is said to be Sasakian symmetric space of pth order, if it Satisfies the following relation $$R_{ijk,\alpha}^{h} = 0$$, or, equivalently $R_{ijkl,\alpha} = 0$ (3.1) Obviously, a Sasakian symmetric space of pth order is Sasakian Ricci-symmetric space of pth order, if it satisfies the condition $$R_{ij,\alpha} = 0, (3.2)$$ Multiplying the above equation (3.2) by g^{ij} , we get $$R_{,\alpha} = 0. ag{3.3}$$ **Definition (3.2):** A Sasakian space satisfying the relation $$K_{\text{hiik},\alpha} = 0$$, or, equivalently $K_{\text{iik},\alpha}^{\text{h}} = 0$, (3.4) is called a Sasakian space with symmetric Bochner curvature tensor of pth order. **Theorem (3.1):** If a Sasakian space satisfies any two of the following Properties: - (i) The space is Sasakian symmetric space of pth order, - (ii) The space is Sasakian Ricci-symmetric space of pth order, - (iii)The space is a Sasakian space with symmetric Bochner curvature tensor of pth order, it must also satisfy the third. **Proof:** Sasakian symmetric space of pth order, Sasakian Ricci- symmetric space of pth order and a Sasakian space with symmetric Bochner Curvature tensor of pth order are respectively characterized by the equations (3.1), (3.2) and (3.4). Therefore, the statement of the above theorem follows in view of equations (1.13), (2.5), (3.1), (3.2) and (3.4). **Theorem (3.2):** The necessary and sufficient condition for a Sasakian space to be Sasakian Ricci-symmetric space of pth order is that $$K_{hijk,\alpha} = R_{hijk,\alpha}$$ (3.5) **Proof:** Let the space be Sasakian Ricci-symmetric space of p^{th} order, then the relation (3.2) is satisfied. The statement of the above theorem follows in view of equations (1.13), (2.5), (3.2) and (3.4). Conversely, in a Sasakian space equation (3.5) is satisfied, then from (2.5), we have $$L_{ij,\alpha}g_{hk} + L_{hi,\alpha}g_{jk} + L_{hk,\alpha}g_{ij} + L_{jk,\alpha}g_{hi} = 0$$ (3.6) which yields with the help of (1.13) $$R_{ii,\alpha} = 0$$ i.e., the space is Sasakian Ricci-symmetric space of pth order. **Theorem (3.3):** Every Sasakian symmetric space of pth order is a Sasakian space with symmetric Bochner curvature tensor of pth order. **Proof:** If the space is Sasakian symmetric space of pth order, equations (3.1) and (3.2) are satisfied, and (2.5), in view of (1.13), (3.1) and (3.2), reduces to $$K_{hijk,\alpha} = 0$$, which shows that the space will also be Sasakian space with symmetric Bochner curvature tensor of pth order. ### References - 1. Okumura, M. (1962). Some remarks on space with a certain contact structure, Tohoku Math. Jour., 14:135-145. - 2. Tachibana, S. (1967). On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu, Univ. 18(1):15-19. - 3. Singh, S. S. (1971). On Kaehlerian spaces with recurrent Bochner curvature tensor, Acc. Naz. Dei. Lincei, Rend, series VIII, 51(3-4):213-220. - 4. Yano, K. (1965).Differential geometry on complex and almost complex spaces, Pergamon press, London. - 5. Negi, D. S. and Rawat, K.S. (1994). Some bi-recurrence and bi-symmetric properties in a Kaehlerian space, Acta Cien. Ind., Vol. XX M, No. 1 95-100. #### JOURNAL OF PROGRESSIVE SCIENCE, VOL7, NO.1 &2, 2016 - 6. Rawat, K.S. (2002). Geometry of locally product almost Tachibana space, Acta, Cien. Ind., XXVII M, (3): 465-468. - 7. Rawat, K.S. and Silswal, G.P. (2005). Theorems on Kaehlerian bi-recurrent and bi-symmetric spaces, Acta Cien. Ind., XXXI M (1): 11-1. - 8. Rawat, K.S. and Girish Dobhal (2007). On the bi-recurrent Bochner curvature tensor, Jour. of the Tensor Society, 1:33-40. - 9. Rawat, K.S. and Virendra Prasad (2008). Some recurrent and symmetric properties in an almost Kaehlerian space, Journal of PAS, Mathematical Sciences 14: 283-288. - 10. Rawat, K.S. and Kunwar Singh (2008). Some bi-recurrence properties in a Kaehlerian space, Jour, PAS, Mathematical Sciences, 14:199-205. - 11. Rawat, K.S. and Girish Dobhal (2009). On Einstein- Kaehlerian s-recurrent space, Inter. Trans. in Mathematical Sciences and computer, 2(2): 339-343 - 12. Rawat, K.S. and Mukesh Kumar (2009). On curvature collineations in a Tachibana recurrent space, Aligarh Bull. Math., 28:1-2, 63-69MR 2769016. - 13. Rawat, K. S. and Nitin Uniyal (2010). Study on Kaehlerian recurrent and symmetric spaces of second order, Jour. of the Tensor Society, 4: 69-76 - 14. Rawat, K.S. and Virendra Prasad (2010). On holomorphically Projectively flat parabolically Kaehlerian spaces, Rev. Bull. Cal. Math. Soc., 18 (1): 21-26 - 15. Rawat, K.S. and Nitin Uniyal (2010). On infinitesimal conformal and projective transformations of K-space and Kaehlerian recurrent space, Inter. Trans. in Mathematical Science and computer, 3(2): 205-213 - 16. Rawat, K.S. and Girish Dobhal (2010). The study of Tachibana bi-recurrent spaces, Antarctica Jour. Math., 7 (4): 413-420 - 17. Rawat, K.S. and Mukesh Kumar (2011). On hyper surfaces of a Conformally flat Kaehlerian recurrent space, Jour. Pure and Applied Mathematika Sciences, LXXIII1-2: 7-13 - 18. Rawat, K.S. and Nitin Uniyal (2011). On conformaltransformation in an almost Kaehlerian and Kaehlerian spaces, Jour. of progressive Science, 2(2): 138-141 - 19. Rawat, K.S., Mukesh Kumar and Nitin Uniyal (2012). On hyperbolically Kaehlerian birecurrent and birsymmetric spaces, IOSR Jour. of Mathematics (IOSRJM), 1(2):28-31 (Included in NASA database). - 20. Rawat, K.S., Nitin Uniyal and Mukesh Kumar (2012). On Einstein-Kaehlerian recurrent and symmetric spaces of second order, IOSR Jour. of Mathematics (IOSRJM), 1(5): 39-42 (Included in NASA database). Received on 10.12.2015 and accepted on 25.8.2017