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Abstract  
        Takano (1967), have been studied decomposition of curvature tensor in a recurrent 
space. Sinha and Singh (1970), have been studied and defined decomposition of recurrent 
curvature tensor field in a Finsler space. Singh and Negi (1985), studied on decomposition 
of recurrent curvature tensor fields in a Kaehlerian space. Further, Negi and Rawat (1995), 
studied decomposition in a Kaehlerian recurrent space. Rawat and Silswal (2007), studied 
decomposition of recurrent curvature fields in a Tachibana space. In the present paper, we 

considered the decomposition of curvature tensor fields 𝑅௜௝௞
௛  in terms of four non-zero 

vectors in a Tachibana first order recurrent space. Several theorems also have been 
established and proved. 
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1.Introduction. An almost Tachibana space is an Almost Hermite space (𝐹௜
௛, 𝑔௜௝), where 

𝐹௜
௛  is an Almost  

complex structure and 𝑔௜௝ is the Hermite metric such that 

                                                   𝐹௜,௝
௛ + 𝐹௝,௜

௛ =,      … (1.1) 

where the comma (,) followed by an index denotes the operator of covariant differentiation 
w. r. t. to the Riemannian metric tensor 𝑔௜௝. 

In an Almost Tachibana space [10], we have 

                                              𝑁௝,௜
௛ = −4൫𝐹௜,௝

௔ ൯𝐹௔
௛,                                                      … (1.2) 
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where 𝐹௜,௝
௛   is pure in I and j and 𝑁௝

௛ is Nijenhuis tensor (Yano, 1965), when the Nijenhuis 

tensor vanishes, the almost Tachibana space is called a Tachibana space and denoted by 𝑇௡. 
A Tachibana space is called Tachibana recurrent space of first order by Lal and 
Singh,1971, if its curvature tensor field satisfy the condition 

                                      𝑅௜௝௞,௔
௛ = 𝜆௔𝑅௜௝௞

௛  

 
For some non-zero vector 𝜆௔  and called the vector of recurrence. 
 

2. DECOMPOSITION OF RECURRENT CURVATURE TENSOR FIELD   𝑹𝒊𝒋𝒌
𝒉          

 

We consider the decomposition of recurrent curvature tensor field  𝑅௜௝௞
௛    in the following 

form 

                                   𝑅௜௝௞
௛ = 𝑣௛𝑋,௜𝜙௝𝜓௞ ,                                    ...(2.1)   

 
 
 
Where the vectors  𝑣௛ , 𝑋,௜ ,  𝜙௝  and   𝜓௞ are such that 

                                   𝜆௛𝑣௛ = 1 .                                                                                … (2.2) 
 

Theorem 2.1 Under the decomposition (2.1), the Bianchi identity for  𝑅௜௝௞
௛  takes the forms 

                             𝑋,௜𝜙௝𝜓௞ + 𝑋,௝𝜙௞𝜓௜ + 𝑋,௞𝜙௜𝜓௝ = 0,                                           … (2.3) 

and                     𝜆௔𝜙௝𝜓௞ + 𝜆௝𝜙௞𝜓௔ + 𝜆௞𝜙௔𝜓௝ = 0.                         … (2.4) 

Proof: From (2.1), we have 
                         𝑋,௜𝜙௝𝜓௞ + 𝑋,௝𝜙௞𝜓௜ + 𝑋,௞𝜙௜𝜓௝ = 0                       … (2.5) 

( since  𝑣௛ ≠ 0) 
From (1.3) and (2.1), we have 
                     𝑣௛𝑋,௜[𝜆௔𝜙௝𝜓௞ + 𝜆௝𝜙௞𝜓௔ + 𝜆௞𝜙௔𝜓௝] = 0,                    … (2.6) 

Multiplying (2.6) by 𝜆௞ and using (2.2), we get 
                      𝑋,௜[𝜆௔𝜙௝𝜓௞ + 𝜆௝𝜙௞𝜓௔ + 𝜆௞𝜙௔𝜓௝] = 0                                                … (2.7) 

( since  𝑋,௜ ≠ 0) 

Or                𝜆௔𝜙௝𝜓௞ + 𝜆௝𝜙௞𝜓௔ + 𝜆௞𝜙௔𝜓௝ = 0 

 This completes the proof of the theorem. 
 

Theorem 2.2 Under the decomposition (2.1), the tensor fields  𝑅௜௝௞
௛ , 𝑅௜௝ and vectors 𝑋,௜, 𝜙௝  

and   𝜓௞satisfies the relations 
                         𝜆௔ 𝑅௜௝௞

௔  =𝜆௜𝑅௝௞ − 𝜆௝𝑅௜௞=𝑋,௜𝜙௝𝜓௞                                                     … (2.8) 
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Proof: With the help of Bianchi Identity, equation (1.3) yields 
                       𝜆௔ 𝑅௜௝௞

௔ = 𝜆௜𝑅௝௞ − 𝜆௝𝑅௜௞                                                                  … (2.9) 

Multiplying (2.1) by 𝜆௛ and using relation (2.2), we get 
                      𝜆௛𝑅௜௝௞

௔ = 𝑋,௜𝜙௝𝜓௞                                                                           … (2.10) 

From equation (2.9) and (2.10) we get the required relation (2.8). 
Theorem 2.3 Under the decomposition (2.1), the quantities 𝜆௔  and 𝑣௛  behave like the 
recurrent vectors, the recurrent form of these quantities are given by 
                       𝜆௔,௠ = 𝜇௠𝜆௔                                                                                     … (2.11) 

 And 𝑣,௠
௛ = −𝜇௠𝑣௛                                                                                                  … (2.12) 

Proof: Differentiating (2.9) covariantly w. r. to 𝑥௠ and using (2.1) and (2.8), we have 
               𝜆௔,௠𝑣௔𝑋,௜𝜙௝𝜓௞ = 𝜆௜,௠𝑅௝௞ − 𝜆௝,௠𝑅௜௞                                                        … (2.13) 

Multiplying (2,13) by 𝜆௔ and using (2.1) and (2.9), we obtain 

             𝜆௔,௠൫𝜆௜𝑅௝௞ − 𝜆௝𝑅௜௞൯ = 𝜆௔(𝜆௜,௠𝑅௝௞ − 𝜆௝,௠𝑅௜௞)                                           … (2.14) 

Now, multiplying equation (2.14) by  𝜆௛, we get 

           𝜆௔,௠൫𝜆௜𝑅௝௞ − 𝜆௝𝑅௜௞൯𝜆௛ = 𝜆௔𝜆௛(𝜆௜,௠𝑅௝௞ − 𝜆௝,௠𝑅௜௞)                                     … (2.15) 

Since the expression on the R.H.S. of the above equation is symmetric in a and h, therefore 
                        𝜆௔,௠𝜆௛ = 𝜆௛,௠𝜆௔                                                                              … (2.16) 

Provided that 
                                   𝜆௜𝑅௝௞ − 𝜆௝𝑅௜௞ ≠ 0 

The vector field 𝜆௔ being non-zero, we can have a proportion vector 𝜇௠ such that 
                                      𝜆௔,௠ = 𝜇௠𝜆௔                                                                       … (2.17) 

Further, differentiating the equation (2.2) w. r. to 𝑥௠   and using relation (2.11), we get 

                                       𝑣,௠
௛ = −𝜇௠𝑣௛  (since  𝜆௛ ≠ 0)                                           … (2.18) 

This proves the theorem 
 
Theorem 2.4 Under the decomposition (2.1), the vectors   𝑋,௜, 𝜙௝  and   𝜓௞satisfies the 

relations 
                 (𝜆௛ + 𝜇௠)𝑋,௜𝜙௝𝜓௞ = 𝑋,௜௠𝜙௝𝜓௞ + 𝑋,௜𝜙௝,௠𝜓௞ + 𝑋,௜𝜙௝𝜓௞,௠                    … (2.19) 

Proof: Differentiating (2.1) covariantly w. r. to 𝑥௠ and using (1.3), (2.1) and (2.12), we 
obtain the required 
result (2.19). 
 
Theorem 2.5 Under the decomposition (2.1), the curvature tensor and holomorphically 
projective curvature tensor are equal if 

    𝜙௞𝜓௠൛൫𝑋,௜𝛿௝
௛ − 𝑋,௝𝛿௜

௛൯ + 𝑋,௟൫𝐹௜
௟𝐹௝

௛ − 𝐹௝
௟𝐹௜

௛൯ൟ + 2𝐹௜
௟𝐹௞

௛𝑋,௟𝜙௝𝜓௞ = 0               … (2.20) 

Proof: The holomorphically projective curvature tensor field 𝑃௜௝௞
௛  is defined by 
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            𝑃௜௝௞
௛ = 𝑅௜௝௞

௛ +
ଵ

(௡ାଶ)
൫𝑅௜௞𝛿௝

௛ − 𝑅௝௞𝛿௜
௛ + 𝑆௜௞𝐹௝

௛ − 𝑆௝௞𝐹௜
௛ + 2𝑆௜௝𝐹௞

௛൯,             … (2.21) 

which may be written in the form 

          𝑃௜௝௞
௛ = 𝑅௜௝௞

௛ + 𝐷௜௝௞
௛ ,                                                                                         … (2.22) 

where 

          𝐷௜௝௞
௛ =

ଵ

(௡ାଶ)
൫𝑅௜௞𝛿௝

௛ − 𝑅௝௞𝛿௜
௛ + 𝑆௜௞𝐹௝

௛ − 𝑆௝௞𝐹௜
௛ + 2𝑆௜௝𝐹௞

௛൯                           … (2.23) 

Contracting indices h and k in (2.1), we have 

                      𝑅௜௝ = 𝑣௞𝑋,௜𝜙௝𝜓௞                                                                                … (2.24) 

In view of (2.24), we have 

                𝑆௜௝ = 𝐹௜
௟𝑣௠𝑋,௜𝜙௝𝜓௞                                                                                 … (2.25) 

Making use of (2.24) and (2.25) in equation (2.23), we have 
   

𝐷௜௝௞
௛ =

ଵ

(௡ାଶ)
[𝑣௠𝜙௞𝜓௠൫𝑋,௜𝛿௝

௛ − 𝑋,௝𝛿௜
௛൯ + 𝑣௠𝑋,௟𝜙௞𝜓௠൫𝐹௜

௟𝐹௝
௛ − 𝐹௝

௟𝐹௜
௛൯ + 2𝐹௜

௟𝐹௞
௛𝑋,௟𝑚𝜙௝𝜓௠              

… (2.26) 
From equation (2.22), it is clear that 

         𝑃௜௝௞
௛ = 𝑅௜௝௞

௛    if   𝐷௜௝௞
௛ = 0,  which in view of equation (2.26) becomes 

𝑣௠𝜙௞𝜓௠൫𝑋,௜𝛿௝
௛ − 𝑋,௝𝛿௜

௛൯ + 𝑣௠𝑋,௟𝜙௞𝜓௠൫𝐹௜
௟𝐹௝

௛ − 𝐹௝
௟𝐹௜

௛൯ + 2𝐹௜
௟𝐹௞

௛𝑋,௟𝑚𝜙௝𝜓௠ = 0… (2.27) 

Multiplying the above equation by 𝜆௠  and using relation (2.2), we obtain the required 
condition (2.20). 
 
Theorem 2.6 Under the decomposition (2.1), the scalar curvature R, satisfy the relation 

                                   𝜆௞𝑅 = 𝑔௜௝𝑋,௜𝜙௝𝜓௞                                                                … (2.28) 

Proof: Contracting indices h and k in (2.1), we get 
                                      𝑅௜௝ = 𝑣௞𝑋,௜𝜙௝𝜓௞                                                  … (2.29) 

Multiplying (2.29) by 𝑔௜௝ on both sides, we get 

              𝑔௜௝𝑅௜௝ = 𝑔௜௝𝑣௞𝑋,௜𝜙௝𝜓௞                                                                              … (2.30) 

Or       

            𝑅 = 𝑔௜௝𝑣௞𝑋,௜𝜙௝𝜓௞   (R=𝑔௜௝𝑅௜௝)                                                                  … (2.31) 

Now, multiplying (2.31) by 𝜆௞ and using (2.2) , we get 

                𝜆௞ 𝑅 = 𝑔௜௝𝑋,௜𝜙௝𝜓௞, 

 which completes the proof of the theorem. 
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