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Abstract

In this paper, we have established certain transformation formulae for ordinary hypergeometric series by
using a known identity and some known summation formulae.
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1. Introduction, Notations and Definitions
Throughout this note, we shall adopt following definitions and notations.
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An ordinary hypergeometric series is generally defined to be a series of the type £*_,a,, where

Zn+z s a rational function of n.Following Gasper & Rahman (1990), we represent generalized
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hypergeometric series as,
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Since long back, mathematicians working in the field of special functions use known summation
formulae to establish transformations. Bailey’s transform Slater (1976) is the best source for
obtaining the transformation formulae for ordinary as well as for basic hypergeometric series.
Making the use of Bailey’s transform and Bailey’s Lemma Denis, Singh, and Singh, (2003,
2007) have established beautiful transformations involving basic hypergeometric series. In this
present paper we have made use of following identity due to Verma (1972) in order to establish
transformations for generalized ordinary hypergeometric series. We shall make use of the
following identity due to Verma (1972).
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Putting, Bn =1,x =1in (1.3) and summing the inner series by Gauss summation formulae,
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We shall make the use of (1.4) in next section in order to establish transformation formulae. Following
summation formulae for ordinary hypergeometric series in order to establish certain interesting
transformation formulae for ordinary hypergeometric series, we have
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Verma & Jain (1980)
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(where m is the greatest integer < /2 3 ).
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(where m is the greatest integer <72 3 ).

73



JOURNAL OF PROGRESSIVE SCIENCE
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Verma and Jain (1980)

(where m is the greatest integer < 2 3 )

2. Main Results

In this paper we establish our main transformation formulae as follows
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in the equation (1.4) and using (1.5), we obtain the transformation:
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in the equation (1.4) and using (1.6), we obtain the transformation:
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(where m is the greatest integer < /2 3 ).
(iii) Putting,WZ%,]/Z(1+a),
)15,
o1
2+5),020 5,5
in the equation (1.4) and using (1.7), we obtain the transformation:
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(where m is the greatest integer < 72 3 ).
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