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1. Preliminaries: Let N be a (2n+r)-dimensional r-Sasakian manifold with structure tensors ,,,(  g). 
Then they satisfy                                                                                                                                                                                                                 

p
p XXX  )(2    ,  0p  ,  0)( Xp   ,  1)( p

p                                                   (1.1)                                                                                                                                        

)()(),(),( YXYXgYXg pp      ,   ),()( p
p XgX                                                                   (1.2)                                               

for any vector fields X and Y tangent to N. We denote by   the Levi-Civita connection on N and R  the curvature 

tensor corresponding to  . Then we have Yano and Kon (1984)                                                                                                                             

XYYXgY p
pX )(),()(    ,  XpX                                                                               (1.3)      

XZYgYZXgXZYgYZXgZYXRZYXR ),(),(),(),(),(),(                                (1.4)                                     

),()()(),),((),),(( WXgZYWZYXRgWZYXRg pp                                                     (1.5)     

),()()(),()()( ZXgWYZYgWX pppp      ),()()( WYgZX pp               

   

    XYYXgYYXR p
pXp )(),()(),(                       (1.6)                                                                                  

for any vector fields X, Y,Z and W tangent to N.   
An m-dimensional submanifold M of  N is said to be a semi-invariant submanifold if there exists a pair of 

orthogonal distributions ),( DD  satisfying the conditions Bejancu and Papaghuic(1981)                        

 
(i)

   
}{ pDDTM  
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(ii)   The distribution D is invariant by    , i .e.  .,)( MxDD xx      

 (iii)    the distribution 
D   is anti-invariant , i.e. MxMTD xx  ,)(                                                                                                                               

where TM and TM  denote the tangent bundle and normal bundle to M respectively . It follows that the normal 

bundle splits as vDTM    ,  where v  is an invariant  sub-bundle of  TM  by   . If  

})0{.}(0{  DrespD  then M is said to be an anti invariant (resp. invariant) submanifold. We say that M is 

proper if  it  is neither invariant nor anti-invariant.                                                                                                                                                                                    
For  any vector bundle S over M we  denote by )(S  the module of all differentiable sections on S. Let   be the 

induced Levi-Civita connection on M and   the induced normal connection on  TM  . The Gauss and 
Weingarten formulae are given respectively  by                                                                                                                                                            
                                                                                                                                                                                                                                                                                         

.                ),( YXhYY XX                                                                                                                                

for any X, Y )(TM  and ),(  TM  where h is the second fundamental form of M and the 

shape operator A is related to h by                                                                                                                                                                  

.                  )),,((),(  YXhgYXAg                                                                                                                                           

The projection morphism of  TM  on D and D  are denoted by P and Q respectively . For 
)(  TM  we denote t  the tangential part and f  the normal part of    respectively. Also , 

we put P   and  Q  . Then we have Bejancu (1986)                                                                                                                                                   

XYYXgXAYXthY p
pYX )(),(),()(                            (1.7)                                   

),(),()( YXhYXfhYX                                                        (1.8)                                                        

XAtXhfX   ),()(                                               (1.9)                                                                                                         

XXh p  ),(  ,   XpX                           (1.10)    

 for any X, Y )(TM  and  ).(  TM                                                                                                                                                 
Now we recall the definition of a locally conformal Kaehler manifold. Let M be a Hermitian 
manifold with complex structure  J . Then M is called a locally conformal Kaehler manifold if 
there exists a closed 1-form  , called the Lee form , on M such that                                                                                                                                       
.                      d                                                                                                                                      
 or equivalently,                                                                                                                                   
                                                                                                                

}),(),()()({
2

1
)( AYXgBYXJXYXYYJX                                (1.11)                                                                                                                                       

for  X, Y )(TM , where  ),,(),( JYXgYX   B is the Lee vector field such that  
JXXBg   ),(),(  is the anti -Lee 1-form and A = - J B is the anti-Lee vector field. 

Moreover , a generalized Hopf manifold is a locally conformal Kaehler manifold whose Lee 
form is parallel , i.e., 0 . (cf.Vaisman 1982).                                                                              
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2. Geometry of Totally r-Contact - umbilical Semi- invariant Submanifolds                                                                                                                              
A submanifold M is said to be totally umbilical if  h (X, Y) = g(X, Y) H , for all X, Y )(TM , where 

trace
m

H (
1

  of  h ), is the mean curvature vector of M. If the mean curvature vector H = 0 then M is called a 

totally geodesic submanifold .                                                                                                                                                                         
A  semi-invariant submanifold  M  is  said  to be totally r- contact-umbilical if                                                                                                                                                                                          

),()(),()(),(),( p
p

p
p YhXXhYHYXgYXh                                  (2.1)                                                                          

.                              YXXYHYXYXg pppp  )()()}()(),({                                                                                                                                

or  equivalently,                                                                                                                                                                                                                                                                                                         

 tXXgHgXXHgXA p
p

p )()},(),()({),(                          (2.2)                                                              

                                                                                                                                         

for any  X, Y )(TM and )(  TM , where H is normal vector field on M. If  H 0  then M is called a 

totally r- contact –geodesic submanifold. We have                                                                                                                                      

Theorem (2.1)   
Any totally r-contact –umbilical proper semi-invariant submanifold of a r-Sasakian manifold N is a totally r-contact-
geodesic submanifold. In the rest of this section, suppose M is a connected non-totally r-contact-geodesic, totally r-
contact –umbilical proper semi-invariant submanifold of a r-Sasakian manifold N. It follows from Theorem (2.1) 

that 1dim D .  
Now, we establish the following Lemmas                                                                                                                                                             
Lemma (2.1)                                                                                        .                    

).(  DH                                                                                                                                                                                   

Proof:  By putting Y = X )(D in (1.8) and taking account of (2.1) we obtain                                                                                                                                            

.                   fHXXgXX ),(                                                                                                                                                                                                                      

Note that the left side and the right side of the above equation is respectively in )(  D  and )(v , hence f H = 0  

or  ).(  DH                                                                                                                                                                                                                                         

Lemma (2.2)                                                                                                                                           

.                    ),(   DHX   for any ).(TMX                                                                                              

                                                                                                                              
Proof: By putting H in (1.9) and taking account of the fact that f H = 0, we obtain                                                                                                                                                               

.                     XAtHXhHf HX   ),(                                                                                                                

                                                                                                                                      

Note that the left side of this equation is in )(v  while the right side is in )(  D  by virtue of (2.1) and Lemma 

(2.1). It follows that 0 Hf X  and so )(   DHX  .                                                                                                                            

Lemma (2.3) 

 HWXWXgHWYWYgWYXR Y
pp

X
pp   )}()(),({)}()(),({]),([                                   

.                      WYXgYWXgXWYg  ),(2),(),(                                                                                                                                

for any ).(,, TMWYX   
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Proof: For any X, Y,W )(TM ,by using (1.8) , (1.10) and (2.1) we obtain                                                                                 

HWYWYHWYWYgWYh p
X

ppp
XX

pp
X }))(()(){()}()(),({),)((                                             

.                        YWYWWYWY X
pp

XX
pp

X ))((.)())((.)(                                                                                                                       

. HXWgYWXYgHWYWYg pp
X

pp )},()()(),({)}()(),({                                                          

.       YXWgWXhWXfhYWXYg p  ),()},(),(){(),(                                                     

.       )},(),(){( YXhYXfhWp                                                                                                                                                                   

It follows from (2.1) and Lemma (2.1) that this equation reduces to                                                                                                                    

YXWgWXYgHWYWYgWYh X
pp

X  ),(),()}()(),({),)((                                                                                                                                                                 

Exchanging X and Y in the above equation , we have                                                                                                                                                                   

XYWgWYXgHWXWXgWXh Y
pp

Y  ),(),()}()(),({),)((                                                                                      

From these equations and the Codazzi equation we obtain the Lemma.                                                                                                                                                                                 
Since M is non-totally r-contact-geodesic, we may choose a connected open set G on M such that H is nowhere zero 

on G. For the moment, we restrict our arguments on such an open set G. Define a unit vector field Z in D  by Z = 

H

1

 , where H . Then we have the following                                                                                                                                                                                             

Lemma (2.4)                                                                                                                                                                                                                                                            
XZX  , for any  )(TMX  .                                                                                                                                                                                                               

Proof: For any )(TMX  , we have                                                                                           .                

0),(  ZZg X    and    0),(),(),(  XZgZgZg pXpX                                                                    

Next, by using (1.7) we obtain                                                                                                                                                                                                                                       

pZX ZXgXAZXthZ   ),(),(   .                                                                                                                                                                                               

By applying   to this equation and taking account of (2.2) we get                                                                                                                          

XXZHgXAZ ZX    ),(                                                                                                                                                                                          

Lemma (2.5)                                                                                                                                                                                                                                                       
The normal vector field H is parallel                                                                                                                                                                                                      
Proof: Let )(DY  be unit vector field.  

Then from (1.6) and Lemma (2.3) 

0]),([  YYRH pp
                                                                                                                                    

Now, consider a unit vector field )(DX  with 0),(),(  YYgYXg  .Then by (1.4) we have                                                                                                       

.),(),( 2 ZXXZRXXZR                                                                                                                                        

By taking inner product with Y we get                                                                                                                                                                                                                      

),),((),),(( YXXZRgYXXZRg                                                                                                                                                      

).,),((),),(( ZXXYRgZXXYRg                                                                                                                      

Together with Lemma (2.3), we obtain                                                                                                                                                                                                                

.0),(  ZHg Y                                                                                                                                       
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Next , by making use of (1.5) we obtain                                                                                                          .                        

).,),((),),((),),(( 2 ZYYZRgZYYZRgZYYZRg       

  On the other hand, it follows from Lemma (2.3) that we obtain 

   ).,(),),((),),(( ZHgZYYZRgZYYZRg Z                                                                                                                                            

These two equations imply that .0),(  ZHg Z   Also this amount to say that )(vHX  , for all 

).(TMX   Together with Lemma (2.2), we obtain that H is parallel.                                                                                                                 

It follows from Lemma (2.5) that   is constant on G. Since M is connected,   is a nonzero constant on M. Hence 

we have  
Lemma (2.6)             
   Z is a unit vector field defined on the whole of M.    
 

3.  Characterization of Totally r-Contact –umbilical Semi-invariant Submanifolds   
  

Theorem (3.1) 
Let M be a connected proper, non totally r-contact –geodesic, totally r-contact –umbilical m –dimensional 
semi-invariant submanifold of a r- Sasakian manifold N. Then it is a generalized Hopf manifold.                                                                                                            
Proof: From our assumption and Theorem (2.1) for any  )(TMX   , we may put                                                                 

p
p

p
p XZXXXZXPXX  )()()()( 2                                                                   

where ).,()( ZXgX   Now we define tensor field J of type (1,1) on M by      

ZXXXJX p
p )()(                                       (3.1)                                                                                      

It is clear that J is an almost complex structure on M. Furthermore , we define a vector field B and a 1-
form   on M by                                                                                                                                                                                                                      

))()((2),()(),(2 XXXBgXZB p
p                         (3.2)                                                                                  

for any ).(TMX                                                                                                                                         

It follows from (1.10) , (3.2) and Lemma (2.4) that , we have 0)(  YX  for any )(, TMYX  . 
Hence,   is parallel (and so is closed).     
 Finally, we shall show that (1.11) holds. For any )(, TMYX  , it follows from (1.7), (1.10), (3.1) and 
Lemma (2.4) that                                                                                                                                                       

.         ZYZYYYYYJ X
pp

XpXpXXX  )(.)()(.)()()(                                                                            

XYYXgXYYXgXAYYXth p
p

pZ   )(),()(),()(),(                                                                                                                                

XYZYXg p  )(),(                                                                                                          

Now, from  (2.1) and (2.2) the above equation becomes                                                                                                                               

ZXYZYXZYXYXgYJ pppp
X )()()()()}()(),({)(                                                                                      

XYYXgXZXXXY p
pp

P
p

p )(),(})()()(){(                                       .                  

XYZYXgXYYXg p
p  )(),()(),(                                                                                                                                    

This, together with (3.1) and (3.2) give        

}),(),(),(),({
2

1
)( JXYBgBYJXgXYJBgJBYXgYJX      .     
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})()(),(),({
2

1
JXYXJYBJYXgJBYXg                                                                                                                                         

This completes the proof of the Theorem. 
As an immediate consequence of Theorem (2.1) and Theorem (3.1), we obtain the following 
 

Theorem (3.2)                                                                                                                                                                                                                                                   
Let M be a connected totally r-contact-umbilical m-dimensional semi-invariant  submanifold of a r-
Sasakian manifold N. Then either                                                                                                      
(i)    M is totally r-contact-geodesic; or                                                                                                                    
(ii)   M is anti-invariant; or                                                                                                                                        
(iii)   M is a generalized Hopf manifold                                                                                                           
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