

On Einstein pseudo conformally bi-symmetric smooth Riemannian manifold G (PCBS)n

Hukum Singh and Rajeev Sinha*

Department of Education in Science and Mathematics National Council of Education Research and Training Centre Sri Aurobindo Marg, New Delhi-110016

Abstract

In this paper, we have studied on generalized pseudo conformally bi-symmetric smooth Riemannian manifold and results related to Einstein $(PCBS)_n$ have been investigated.

Keywords: Pseudo symmetric, Pseudo conformal, Riemannian manifold, conformal curvature tensor, Einstein manifold.

1. Introduction

The notion of a pseudo conformally symmetric manifold was introduced by De and Biswas (1994). A non-flat smooth Riemannian manifold $(M_n,<,>)$ (n>3) was called pseudo conformally symmetric smooth Riemannian manifold, if the conformal curvature tensor C defined by relation

$$C(X, Y, Z) = R(X, Y, Z) - \frac{1}{(n-2)} [< Y, Z > QX - < X, Z > QY$$

$$+ T(Y, Z) X - T(X, Z)Y] + \frac{r}{(n-1)(n-2)} [< Y, Z > X - < X, Z > Y],$$
(1.1)

where R is the curvature tensor of type (1,3), T is Ricci tensor, <, > is metric tensor, r is the scalar curvature and Q is the symmetric endomorphism corresponding to the Ricci tensor T defined as

$$T(X,Y) = \langle QX,Y \rangle$$
, 1.2)

satisfies the condition

$$(D_XC)(Y,Z,V) = 2A(X)C(Y,Z,V) + A(Y)C(X,Z,V) + A(Z)C(X,Y,V) + A(V)C(Y,Z,X) + C(Y,Z,V), X > L,$$
(1.3)

where A is non-zero 1- form D_X denote the operator of covariant differentiation with respect to the metric <>, X, Y, Z, $L \in \mathcal{X}$ (M_n) and L is a vector field given by

$$\langle X, L \rangle = A(X),$$
 for all $X \in \mathcal{X}(M_n)$. (1.4)

^{*}Assistant Professor, IBIT, 197 Muida Ahmad Nagar, Bareilly, India, drrajeev00@gmail.com

JOURNAL OF PROGRESSIVE SCIENCE

A non- flat smooth Riemannian manifold is called pseudo bi - symmetric by Singh and Sinha (2004), if curvature tensor R satisfies the relation

$$(D_{W} D_{X} R)(Y,Z,V) = 2A(W,X)R(Y,Z,V) + A(W,Y)R(X,Z,V) + A(W,Z) R(Y,X,V) + A(W,V) R(Y,Z,X)$$

$$+ \langle R(Y,Z,V),(W,X) \rangle L,$$
(1.5)

where L is vector field given by

$$<$$
(W,X), $2L> = A(W,X)$, for W, X $\in \mathcal{X}(M_n)$.

This smooth Riemannian manifold is converted in to a special weakly bi - symmetric smooth Riemannian manifold (Singh and Sinha, 2004), if it satisfy the relation

$$(D_{W} D_{X} R)(Y,Z,V) = 2\alpha(W,X)R(Y,Z,V) + \alpha(W,Y)R(X,Z,V) + \alpha(W,Z)R(Y,X,Z) + \alpha(W,V)R(Y,Z,X),$$
(1.6)

where α is non-zero 2-form defined as

$$\alpha(W,X) = \langle (W,X), L \rangle, \tag{1.7}$$

where L is a vector field.

In section 2, we have studied generalized pseudo conformally bi-symmetric manifold $(GPCBS)_n$. In section 3, we have studied Einstein generalized pseudo conformally bi-symmetric manifold. In the last section of this paper, we have studied transformation of $(GPCBS)_n$ and obtained some important results.

2. Generalized pseudo conformally bi-symmetric smooth Riemannian manifold G(PCBS)_n

A non - flat smooth Riemannian manifold is called conformally pseudo bi-symmetric, if C satisfies the relation

$$(D_W D_X C)(Y,Z,V) = 2A(W,X)C(Y,Z,V) + A(W,Y)C(X,Z,V) + A(W,Z) C(Y,X,V) + A(W,V) C (Y,Z,X) (2.1)$$

$$+ \langle C(Y,Z,V), (W,X) \rangle L .$$

The objective of this section is to study a type of non-flat smooth Riemannian manifold $(M_n, <, >)$, whose conformal curvature tensor C satisfies the condition

$$(D_{W}D_{X}C)(Y,Z,V) = 2A(W,X)C(Y,Z,V) + B(W,Y)C(X,Z,V)$$
(2.2)

 $+ D(W,Z) C(Y,X,V) + E(W,V) C(Y,Z,X) + \langle C(Y,Z,V), (W,X) \rangle L$

where A, B, D, E are non - zero 2- forms and L is a vector field given by

$$<(W,X), L> = A(W,X), \quad \forall \quad W \text{ and } X \in \mathcal{X} (M_n).$$
 (2.3)

Such a manifold will be called a generalized pseudo conformally bi - symmetric smooth Riemannian manifold and will be denoted as $G(PCBS)_n$.

Let

$$\langle (W,X), \lambda \rangle = B(W,X),$$
 (2.4)

$$<$$
 (W,Z), μ > = D (W,Z),
 $<$ (W,V), ν > = E(W,V).

Then $\lambda, \mu, \nu \in \mathcal{X}$ (M_n) will be called the basic vector fields of $G(PCBS)_n$ corresponding to the associated 2-forms A,B,D,E, respectively. If in particular A=B=D=E, then the smooth Riemannian manifold reduce to conformally pseudo bi-symmetric smooth Riemannian manifold.

3. Einstein G (PCBS)_n (n>3)

In this section, we assume that equation (2.2) in holds a $G(PCBS)_n$ to be an Einstein. Then the Ricci tensor satisfies following relation:

$$T(X,Y) = \frac{r}{n} \langle X, Y \rangle, \tag{3.1}$$

from which it follows that

$$dr(X) = 0$$
 and $(D_W D_Z T)(X, Y) = 0.$ (3.2)

From $(D_W D_Z T)(X,Y) = 0$ by contraction, we get

 $(D_W D_Z Q)(Y) = 0,$

where Q is defined by equation (1.2).

In consequences of (1.1), (2.2), (3.1), (3.2) and Bianchi identity, we obtained

$$3A(R(Y,Z,V),W) + B(R(Y,Z,V),W) + (R(Y,Z,V),W)$$
 (3.3)

$$+ [2T(Z, V) - \frac{2r}{(n-1)} < Z, W >] A (W, Y)$$

$$+ [\frac{(n-2)}{n(n-1)} < Y, V > 2T(Y, V)]A(W, Z) - \frac{r}{n(n-1)} \quad B(W, Y) < Z, V >$$

$$- \frac{r}{n(n-1)} B(W, Z) < Y, V > -\frac{r}{n(n-1)} \quad D(W, Y) < Z, W >$$

$$- \frac{r}{n(n-1)} D(W, Z) < Y, W > -\frac{r}{n(n-1)} \quad E(W, V) < Z, Y > = 0.$$

Putting $Y = Z = e_i$ in equation (3.3), where $\{e_i\}$ is an orthonormal basis of the tangent space at each point of the manifold, we get

$$r[A(W,X) + nE(W,V)] = 0.$$
 (3.4)

Hence if r = 0 in equation (3.4), it follows that $G(PCBS)_n$ is $G(PBS)_n$. Thus, we can state the following theorem:

Theorem 3.1

An Einstein G(PCBS)_n is G(PBS)_n, if

 $(A(W,V) + n E(W,V)) \neq 0$.

Next, we suppose that in an Einstein $G(PCBS)_n$, vector field L defined by equation (2.3) is parallel vector field. Then

$$(D_W D_X L) = 0, for all X \in \mathcal{X} (M_n). (3.5)$$

Applying Ricci identity in equation (3.5), we get

$$R(W,X,Y)L = 0$$
. (3.6)

From equation (3.6), it follows that

$$'R(X,Y,Z,W) L = 0, (3.7)$$

where $'R(X,Y,Z,W)L = \langle 'R(X,Y,Z,W),L \rangle$

By virtue of equation (3.7), we get

$$T((X,W),L) = 0$$
. (3.8)

Now by equations (3.5) and (3.8),

$$(D_{W}D_{X}T)(Y,L) = D_{W}D_{X}T(Y,L) - T(D_{W}D_{X}Y,L) - T(Y,D_{W}D_{X}L) = 0.$$
(3.9)

Further, we have

$$(D_{W}D_{X}T)(Z, V) = B(R'(X, Y, Z, V), W) - \frac{r}{n(n-1)}[<(Y, Z), V>B(W, X)]$$
(3.10)

$$-<(X,Z),V>B(W,Z)$$
].

Putting V = L in equation (3.10) and applying equations (3.6) and (3.8), we get

$$\frac{r}{n(n-1)}[A(W, Z) B(X, Y) - A(W, X) B(Z, Y)] = 0,$$
(3.11)

if $A(W,Z) B(X,Y) \neq A(W,X) B(Z,Y)$, we get r = 0.

Hence, we can state the following theorem:

Theorem 3.2

If the vector L is a parallel vector field in an Einstein $G(PCBS)_n$, then $G(PCBS)_n$ reduces to $G(PBS)_n$ provided the vector field L corresponding to the 2-forms, A and B are not co-directional.

4. Conformal transformation of G(PCBS)_n

Definition

Let M_n be an Riemannian manifold metric tensor < ,> A transformation ϕ of M is said to be conformal is ϕ < * > = σ^2 <,>, where σ is a positive function on M_n . If σ is a constant function, ϕ is called homothetic transformation (Kobayashi and Nomizu, 1963).

Let $\mathbf{D}_{W}^{*} \mathbf{D}_{X}^{*}$ be the operator of bi-covariant differentiation with respect to $<^{*},>$, we have

$$D_{W}^{*} D_{X}^{*} Y - D_{W} D_{X} Y = \omega(W,X) Y + \omega(W,Y) X - \langle (W,X)Y \rangle U,$$
(4.1)

for any vector field W,X,Y $\in \mathcal{X}$ (M_n), where ω is 2-form defined by

$$\omega = d \log \sigma \tag{4.2}$$

and U is a vector field defined by

$$\langle U, (W,X) \rangle = \omega(W,X). \tag{4.3}$$

By the conformal transformation, it is well-known that

$$\hat{C}(Y,Z,V) = C(Y,Z,V), \qquad (4.4)$$

where the symbol * denote the quantities of M_n .

Taking bi-covariant differention of equation (4.4) and making use of the relation (4.1), we get

$$(D_{W} D_{X}C) (Y,Z,V) = (D_{W}^{*}D_{X}C) (Y,Z,V) - 2 \omega (W,X) C(Y,Z,V)$$

$$- [\omega (W,Y)C(X,Z,V) + \omega (W,X)C (Y,Z,V)$$

$$+ \omega (W,V) (Y,Z,X) + \langle C(Y,Z,V)(W,X) \rangle U]$$

$$+ \omega (C(Y,Z,V),(W,X)) + \langle W,X \rangle, Y \rangle C (U,Z,V)$$
(4.5)

$$+ < (W,X),Z > C(Y,U,V) + < (W,X),V > C(Y,Z,U)$$
.

Now, we assume that both M_n and M_n are $\mathring{G}(PCBS)_n$, then

$$(D_{W}D_{X}C) (Y,Z,V) = 2A (W,X) C(Y,Z,V) + B(W,Y)C(X,Z)V + D(W,Z)(Y,X,V) + E(W,V)C (Y,Z,X) + < C(Y,Z,V),(W,X) > L$$
(4.6)

and

$$(D_{W} D_{X} C) (Y,Z,V) = 2 A (W,X) C (Y,Z,V) + B (W,Y) C (X,Z,V)$$
(4.7)

$$+\stackrel{\circ}{D}(W,Z)\stackrel{\circ}{C}(Y,X,V)+\stackrel{\circ}{E}(W,V)\stackrel{\circ}{C}(Y,Z,X) \\ +<\stackrel{\circ}{C}(Y,Z,V),(W,X)>\stackrel{\circ}{L},$$

for a non-zero 2- forms $A,\,B,\,D,\,E$ and A,B,D,E and

$$<(W,X), L>=A(W,X).$$

Substituting equations (4.6) and (4.7) in (4.5) and using equation (4.4), we have

$$2\{\stackrel{*}{A}(W,X)-\stackrel{*}{A}(W,X)\}\ C(Y,Z,V)+\{\stackrel{*}{B}(W,Y)-B(W,Y)\}\ C(X,Z,W) \eqno(4.8)$$

 $+ \{ \stackrel{*}{D} (W,Z) - D(W,Z) \} C(Y,X) V + \{ \stackrel{*}{E} (W,V) - E(W,V) \} C(Y,Z,X)$

Now, we consider two cases:

CASE-I

$$\overset{*}{A}(W,X) = A(W,X)$$
, $\overset{*}{B}(W,X) = B(W,X)$, $\overset{*}{D}(W,X) = D(W,X)$,

$$E(W,X) = E(W,X)$$
.

In this case, equation (4.8) reduces to

$$2 \omega (W,X) C(Y,Z,V) + \omega (W,Y) C(X,Z,V) + \omega (W,Z) C(Y,X,V) + \omega (W,V) C(Y,Z,X) + < C(Y,Z,V),(W,X) > U - \omega \{(Y,Z,V),(W,X)\} + < (W,X),Y > C(U,Z,V) - < (W,X), Z > C(Y,Z,V) + < (W,X), V > C(Y,Z,V) = 0 .$$
 (4.9)

Contracting equation (4.9) over X, we get

$$(n-3) \omega (W, C(Y,Z,V)) = 0.$$
 (4.10)

Since n > 3, equation (4.10) implies that

$$\omega\left(W,C\left(Y,Z,V\right)\right) = 0, \tag{4.11}$$

from which it follows that

$$C(U,Y,Z) = 0$$
; $C(Y,U,Z) = 0$ and $C(Y,Z,U) = 0$. (4.12)

Applying equations (4.11) and (4.12) in equation (4.9), it follows that

$$2 \omega (W,X) C(Y,Z,V) + \omega (W,Y) C(X,Z,V) + \omega (W,Z) C(Y,X,V) + \omega (W,Z) C(Y,X,V) + \omega (W,V) C(Y,Z,X) + \langle C(Y,Z,V),(W,X) \rangle U = 0.$$
(4.13)

Putting X = U in equation (4.13) & using equations (4.11) and (4.12), we get

$$\omega$$
 (W,U) C(Y,Z,V) = 0.

Hence, either
$$C(Y,Z,V) = 0$$
. (4.14)

$$\omega(W,V) = 0. \tag{4.15}$$

From equations (4.2) and (4.15), we get $\sigma = \text{constant}$.

Hence, we can state the following theorem:

Theorem 4.1

If a $G(PCBS)_n$ is transformed into a $G(PCBS)_n$ with same associate 2-forms by a conformal transformation, then either the smooth Riemannian manifold is conformally flat or the transformation is homothetic.

Now, if L = constant and smooth Riemannian manifold is conformally flat, then equation (4.5), can be written as

$$(D_{W}^{*} D_{X}C) (Y,Z,V) = (D_{W} D_{X} C) (Y,Z,W).$$

Consequently, a $G(PCBS)_n$ may be transformed into $G(PCBS)_n$ by a conformal transformation of equation.

Thus considering from the theorem 4.1, we have

Theorem 4.2

In order that $G(PCBS)_n$ which is not conformally flat is transformed into another $G(PCBS)_n$ with the same associated 2- forms by a conformal transformation, it is necessary and sufficient that L is constant.

CASE II

In this case we assume that,

$$\stackrel{\circ}{A}$$
 $(W,X) \stackrel{*}{\neq} A(W,X)$, $\stackrel{\circ}{B}$ $(W,X) \neq B(W,X)$,.

$$D(W,X) \neq D(W,X), E(W,X) \neq E(W,X).$$

Contracting equation (4.8) over X, we get

$$3[A \{C(Y,Z,V),(W,X)\}] - A\{C(Y,Z,V),(W,X)\} = (n-3)\omega \{C(Y,Z,V),(W,X)\}.$$
Let us consider (4.16)

$${\rm A}^{*}(W,X) - {\rm A}(W,X) = \omega(W,X).$$
 (4.17)

Then from (4.16), we get

$$\omega \{C(Y,Z,V), (W,X)\} = 0. \tag{4.18}$$

Putting X = U in equation (4.8) and using equation (4.18), we get

$$[2\{A W,U\} - A(W,U)\} + 2\omega(W,U)]C(Y,Z,V) = 0.$$
(4.19)

By equation (4.17), it follows from equation (4.19), either C(Y,Z,V)=0.

$$\omega(W,V) = 0. \tag{4.20}$$

But equation (4.20) is impossible, since in this case $\stackrel{*}{A}$ (W,X) \neq A(W,X),

*
$$B(W,X) \neq B(W,X)$$
, $D(W,X) \neq D(W,X)$, $E(W,X) \neq E(W,X)$.

Thus, we have the following theorem:

Theorem 4.3

If $G(PCBS)_n$ is transformed into another $G(PCBS)_n$ with difference associated 2- forms by a conformal transformation, satisfying the condition (4.17), then the manifold is conformally flat.

References

- 1. Chaki, M.C. and De. U.C. (1989), On pseudo symmetric spaces, *Acta math*, Hung. 54 (3-4): 185-190
- 2. De, U.C. and Biswas, H.A. (1994), On generalized recurrent Riemannian spaces, *Ganita*, Vol. 45(1): 71-76
- 3. De, U.C. and De, B.K. (1977) On generalized pseudo conformally symmetric manifolds, *Bull. Cal. Math Soc.* 89: 71-80.
- 4. Kobayashi , J. and Nomizu, K. (1963) Foundation of Differential Geometry Vol I, Inter Science Publ., New York
- 5. Mishra, R.S. (1965) A course in tensor with applications to Riemannian geometry, Pothishala private Ltd. 2-Lajpat Road, Allahabad, India
- 6. Singh, H. and Khan, Q. (2001) On special weakly symmetric Riemannian manifolds, Publ. *Math. Debrecen*, 58/3:523-53
- 7. Singh, H. and Sinha, R. (2004) On special weakly bi-symmetric Riemannian manifolds, *Varahmihir Journal of Mathematical Science* Vol. 4. (2): 423-432
- 8. Sinha, B.B. (1982) An Introduction to Modern Differetial Geometry, Kalyani Publisher, New Delhi

Received on 20.07.2010 and Accepted on 24.10.2010