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Abstract 
 

Steady state solutions are analysed to determine the velocity and temperature profiles of micropolar fluid 
model of blood flow through a vascular bed. The present model assumes the vascular bed in the form of 
tapered channel. Exact solutions to the governing equations are obtained by employing a constant spin 
boundary conditions to describe the cell rotation velocity at the boundaries. The results obtained are 
applicable to both arterial and venous beds and may be useful for pathological purposes. 
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Introduction 

The straight channel flow in Newtonian and Non-Newtonian fluids have been studied by previous authors 
Tandan and Rai Singhani (1970), Yu and Yung (1969), Kapur and Rathy (1962). A continuing problem in 
hemodynamics or blood rheology have been to gain a quantitative understanding of the non-Newtonian 
behaviour of blood in steady flow. In order to understand the rheological properties of blood one has to 
make a model study, using physical models of convenient macroscopic scale, with simulated blood. The 
most important advantage of using these models is the possibility of simplifying the geometry and 
boundary conditions, so that we can concentrate at once on the most important factor involved in the 
problem. Within the past decade it has become evident through demographic studies that the majority of 
human deaths in the world occur directly as a result of diseases of the heart and cardiovascular system. 
One of the wide spread disease is atherosclerosis, involving hardening and thickening of blood vessel 
walls, resulting the accumulation in the intima of deposits of minerals, lipids, glycoproteins of collagen. 
At present the mechanism of atherogenesis is not well understood. An important motivation behind this is 
the fact that the phenomenon of atherosclerosis is known to selectively occur at arterial sides of curvature, 
bifurcation, tapering and branching etc. (Texon, 1960, Caro et al (1971). Several hemodynamics theories 
for the justification of this phenomenon have been suggested by Chandran et al (1974, 1979). In any 
vascular bed, the vessels bifurcate at frequent interval and the individual segments may be approximately 
uniform between branch points, the diameter varies quite rapidly with respect to the distance. Since the 
vessel diameter reduces at each bifurcation Weibel (1963). 
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Also the notion of tapered tube models were first suggested by Wormersley (1957) and have been 
discussed by Streeter (1965), and Ibrall (1964). This suggests that a vascular bed may be approximated by 
tapered channel rather than of uniform segments. Most of the previous studies have been treating blood as 
a viscous, hemogeneous incompressible fluid. But it has been concluded and experimentally verified that 
the suspended blood cells are responsible for non-Newtonian nature of blood rheology through such 
mechanism as erythrocytes aggregation and erythrocyte deformation (Copley et al. (1976), Chien et al. 
(1970). The number of attempts have been made to explain the anamolous behaviour of blood by 
proposing different theoretical models Das and Seshadari (1975), PAL and Dwivedi (1985), Dwivedi et al 
(1982), Tandon et al. (1985), Pal et al (1980), Some heat transfer problems of non-Newtonian fluid model 
of blood have been studied by different authors. (Damseh et al. (2007), Baris (2003). Motivated by the 
above studies, it is the objective of this paper to consider the problem of steady flow and heat transfer in a 
micropolar fluid model of blood flowing through rigid tapered channel. A spin boundary condition on red 
blood cell is used at the surface (Arimen et al. (1974). We have consider the constant pressure gradient 
throughout the analysis (Wirz et al. (1978). Using these assumptions analytical expressions for the flow 
velocity, microrotation velocity, flow rate and temperature distribution. 

Formulation of the problem 

While developing the theoretical model one must simplify the equations of motion sufficiently to permit 
calculations of the required flow variables while at realism of the model. The basic equations, proposed 
by Eringen (1966) for micro-polar fluid applicable to blood flow (Ariman et al. (1974)] and by using the 
assumption given Tenner (1966) may be written as 
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where s, R and  are the shear viscosity, rotational viscosity and rotational gradient coefficient 

respectively.  ux, x and px are the axial velocity, rotational velocity and pressure respectively. x' and y' are 
the axial and vertical co-ordinates along the length and thickness of the channel respectively. K is the 
thermal conductivity and T is temperature distribution in the channel. 
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Boundary conditions 
 The boundary conditions are given by 

   0                      at  y' =  h'xu    
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                         at  y' =  h'cT T   

which h' is the thickness of the channel. 

By using the following non-dimensional equations 
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The governing equations take the form after using (6) 
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The taperness of the channel is given by the expression 
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   or h = 1- mx                         (11) 

            where  m  = 0h h

L

                          (12) 

where 2 h  is the maximum and 2 0h the minimum opening the channel. L is the length of the channel. 

 The Boundary conditions (5) become 
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Solutions 

 The velocity profiles are obtained from the equations (7, 9) by using boundary condition (13) and 
are as follows 
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The volumetric flow rate is given by 
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Now since the tapered angle is very small i.e. m is very small as well as the value of h can not be zero. 

Hence, writing the expansions for sinh(h) and cosh(h) is asending powers of x and retaining the terms 
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Integrating equation (18) we get 
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The constant of integration G is evaluated with the help of following conditions  
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The equation (21) gives pressure difference at any point in the channel and equation (22) gives 
the flow rate Q for different values of the pressure difference (Pe-PE) between the entry and exit 
cross sections, and for different values of m. In the absence of tapeness it is obvious from the 
equation (21), a constant pressure gradient acts throughout the straight channel. 

Heat Transfer 
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Results and discussion 
 

We have taken the constant pressure gradient throughout the numerical analysis, because constant 
pressure gradient is one of the possible cases (as regards the conservation of mass, momentum and 
energy) under which the problem can be solved and can be verified by the experimental observations 
(Wirz and Smolderen (1978). 
 

Fig-8 depicts the variation of 
pressure difference with axial distance 
for different value of coupling 
constant, and tapered angle and fixed 
value of viscosity coefficient (n2 = 
7.5). It is obvious from the figure that 
the pressure difference at any point of 
the channel is more in case of 
micropolar fluid as compared to 
corresponding viscous fluid (i.e. n3 = 
0). Also pressure difference at any 
point increases with the increase of 
coupling constant and axial distance 
but decrease with tapered angle. 

 From above analysis it is concluded 
that axial velocity, microrotational 
velocity, volume flow rate, pressure 
difference and temperature are highly 
influence by assumption of taperness. 
We have also observed from the 
figures that the coupling constant has 
more influence on above 
characteristics than usual viscosity 
coefficient. 

 
 
Fig-1 The variation of axial velocity profile with coupling constant (n3), usual velocity coefficient (n2) 

and tapeness (m) for fixed position at x = .60 of the channel have been shown in fig-1. It is found 
that for a micropolar fluid model of blood, axial velocity increases with increase in n3 for fixed 
tapered angle and decreases with m for fixed value of coupling constant. It is also clear from the 
figure that axial velocity decreases with increasing the usual viscosity coefficient. 
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Fig-2 depicts the variation of micro-rotational velocity with m, n2 and n3 for fixed axial position x = .60. 
We conclude that an increase in n3 and leads to an increase in the micro-rotational velocity and the 
micro-rotational velocity increases, with decreasing values of m and n2. It is seen that the 
qualitative behaviour of micro-rotational velocity is same as axial velocity. 

 
Fig-3&4 show the variation of axial velocity and micro-rotational velocity with axial distance for 

different values of n3, n2 and m for fixed radial position. y = 0.75. It is clear from the figure that 
the axial velocity and micro-rotational velocity increases with axial distance and coupling 
constant, but both velocities decrease with increasing value of usual viscosity coefficient and 
tapered angle. 

Fig-5 shows the variation of volume flow rate with axial distance for different values of coupling 
constant, viscosity coefficient and tapered angle. It is found that an increase in coupling constant 
leads to increase in the volume flow rate. But increase in viscosity coefficient tapered angle leads 
to decrease in volume flow rate. 
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Fig-7 shows the 
variation of temperature 
with axial distance for 
different value of other 
parameter. It is clear 
from the figure that the 
temperature first 
increases with taperness 
but later on decreases 
with increasing 
taperness for fixed 
value of n3 = 0.6. But 
for n3 = 1.2 the 
temperature increases 
throughout with axial 
distance for increasing 
value of taperness. 
Temperature also 
increases with coupling 
constant. From figure 
we can conclude that 
the temperature is 
larger in micropolar 
fluid than the 
corresponding viscous 
fluid. 

 
Fig-6 depicts the variation of Temperature distribution for different value of coupling constant, viscosity coefficient and 

tapered angle for fixed value of x = 0.60. We conclude that temperature decreases with increasing the tapered 
angle and viscosity coefficient. But increases with increasing coupling constant for fixed values of other 
parameters.  

 
 
 


