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Abstract 

In this paper we studied a quasi-concircular curvature tensor in a Riemannian manifold which generalizes 
the concircular curvature tensor. We start by deducing some fundamental geometric properties of quasi-
concircualr curvature tensor (𝑄𝐶𝐶𝑇). After that, we study quasi-concircualr symmetric manifolds.  
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1.Introduction 

Curvature tensor plays a crucial role in the development of differential geometry and physics. According 
to Chern (1990) “A fundamental notion is the curvature, in its different forms”. Therefore, finding the 
curvature tensors are very interesting topics for the workers. Therefore, in this paper we studied a (𝑄𝐶𝐶𝑇) 
which generalizes the some known curvature tensors. 

Investing conformally flat Riemannian manifolds of dimension of class one, Sen and Chaki (1967) found 
that the curvature tensor 𝑅 of type (0,4) satisfies  

𝑅௛௜௝௞,௟ = 2𝑎௟𝑅௛௜௝ + 𝑎௛𝑅௟௜௝௞ + 𝑎௜𝑅௛௟௝௞ + 𝑎௝𝑅௛௜௟௞ + 𝑎௞𝑅௛௜௝௟ , 

where “comma” denotes the covariant derivative with respect to metric and 𝑅௛௜௝  are the components of 

the curvature tensor 𝑅 of the type (0,4). Here after Chaki (1987) and Chaki and De (1989) examine the 
Riemannian manifold with the above condition. The first author called such a manifolds pseudo 
symmetric, since locally symmetric manifold satisfies the above condition with 𝑎௟ = 0. 

The above expression in index free notation can be written as  

(𝐷௑𝑅)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)𝑅(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)𝑅(𝑋, Z, 𝑈, 𝑉) + 

𝐴(𝑍)𝑅(𝑌, 𝑋, 𝑈, 𝑉) + 𝐴(𝑈)𝑅(𝑌, 𝑍, 𝑋, 𝑉) + 𝐴(𝑉)𝑅(𝑌, 𝑍, 𝑈, 𝑋),   

where 𝐴 is a non-zero 1-form, 𝜌 is a vector field defined by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) for all 𝑋, 𝐷 denotes the 
operator of covariant differentiation with respect to metric 𝑔 and 𝑅(𝑌, 𝑍, 𝑈, 𝑉) = (ℛ(𝑌, 𝑍)𝑈, 𝑉), where ℛ 
is the curvature tensor of the type  (1,3). The 1-form 𝐴 is called the associated 1-form of the manifold. If 
𝐴 = 0, then the manifold becomes locally symmetric manifold in the sence of Cartan. An n-dimensional 
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pseudo symmetric manifold is denoted by (𝑃𝑆)௡ . Pseudo symmetric manifolds have been studied by 
several authors such as Mantica and Molinari (2012), Mantica and Suh (2013), Zengin and Tasci (2014), 
De and Majhi (2018) and many others.  

A transformation of an n-dimensional Riemannian manifold 𝑀, which transforms every geodesic circle of 
𝑀 into a geodesic circle is called a concircular transformation Yano (1940). A concircular transformation 
is always a conformal transformation Yano (1940). Here geodesic circle means a curve in 𝑀 whose first 
curvature is constant and second curvature is identically zero. Thus the geometry of concircular 
transformation that is the concircular geometry in the that the change of metric is more general than that 
induced by a circle preserving diffeomorphism Yano and Bochner (1953). An interesting invariant of a 
concircular transformation is the concircular curvature tensor  𝐿  with respect to the Levi-Civita 
connection. It is defined by Yano (1940)  

𝐿(𝑋, 𝑌)𝑍 =  ℛ(𝑋, 𝑌)𝑍 −
௥

௡(௡ିଵ)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 ],                             (1.1) 

where𝑋, 𝑌, 𝑍 are differentiable vector fields, ℛ and 𝑟 are curvature tensor and the scalar curvature tensor 
with respect to Levi-Civita connection respectively. A Riemannian manifold with vanishing concircular 
curvature tensor is of constant curvature. Thus, the concircular curvature tensor is the measure of the 
failure of a Riemannian manifold to be of constant curvature.   

In 2007, Prasad and Maurya, defined quasi-concircualr curvature tensor (𝑄𝐶𝐶𝑇) by the expression  

𝐿෨(𝑋, 𝑌)𝑍 =  𝑎ℛ(𝑋, 𝑌)𝑍 +
௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 ],                   (1.2) 

where𝑎 and 𝑏 are constant such that 𝑎, 𝑏 ≠ 0. In particular, if =  1, 𝑏 =  −
 ଵ

௡ିଵ
 , then the equation (1.2) 

reduces in concircualr curvature tensor. Hence𝐿(𝑋, 𝑌)𝑍 is a particular case of   𝐿෨(𝑋, 𝑌)𝑍. This justifies 
their nomenclature.  

From equation (1.2), we can write an expression of the type (0,4) as follows: 

′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊)  =  𝑎. 𝑅(𝑋, 𝑌, 𝑍, 𝑊) +
𝑟

𝑛
ቀ

𝑎

𝑛 − 1
+ 2𝑏ቁ [𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊) 

−𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑊) ],                       (1.3) 

where𝑔(𝐿෨(𝑋, 𝑌)𝑍, 𝑊) = ′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊). Several authors studied (𝑄𝐶𝐶𝑇) in different way such as (Narain 
et.al 2009), (Kumar et. al, 2009), (Ahmad et.al, 2019) and many others.  

The (𝑄𝐶𝐶𝑇) satisfying the following algebraic properties: 

′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊)+ᇱ𝐿෨(𝑌, 𝑋, 𝑍, W) = 0,

′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊) + ′𝐿෨(𝑋, 𝑌, 𝑊, 𝑍) = 0,

′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊)−ᇱ𝐿෨(𝑍, 𝑊, 𝑋, 𝑌) = 0,                                  

′𝐿෨(𝑋, 𝑌, 𝑍, 𝑊) + ′𝐿෨(𝑌, 𝑍, 𝑋, 𝑊) +  ′𝐿෨(𝑍, 𝑋, 𝑌, 𝑊) = 0.⎭
⎪
⎬

⎪
⎫

                    (1.4) 

Let {𝑒௜} be an orthonormal basis of the tangent space at each point of the manifold where 1 ≤ 𝑖 ≤ 𝑛. 

Now, from (1.3), we have  

෍ ′𝐿෨

௡

௜ୀଵ

(𝑋, 𝑌, 𝑒௜, 𝑒௜) = ෍ ′𝐿෨

௡

௜ୀଵ

(𝑒௜, 𝑒௜ , 𝑍, 𝑊) = 0, 

∑ ′𝐿෨௡
௜ୀଵ (𝑒௜, 𝑌, 𝑍, 𝑒௜) = 𝑎𝑅𝑖𝑐(𝑌, 𝑍) +

௥

௡
[𝑎 + 2(𝑛 − 1)𝑏]𝑔(𝑌, 𝑍) = 𝐿ଵ(𝑌, Z).               (1.5)  
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A non-flat Riemannian manifold (𝑀௡, 𝑔), (𝑛 > 2), is said to be a pseudo quasi-concircular symmetric 

manifold if the quasi-concircular curvature tensor (𝑄𝐶𝐶𝑇) ′𝐿෨  of type (0,4) satisfies the condition: 

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑈)′𝐿෨(𝑋, 𝑍, 𝑈, 𝑉) + 𝐴(𝑍)′𝐿෨(𝑌, 𝑋, 𝑈, 𝑉) 

   + 𝐴(𝑈)′𝐿෨(𝑌, 𝑍, 𝑋, 𝑉) + 𝐴(𝑉)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑋),                    (1.6) 

where𝐴 is a non-zero 1-form, 𝜌 is a vector field defined by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

An n-dimensional pseudo quasi-concircular symmetric manifold is denoted by (𝑃𝑄′𝐿෨𝑆), where P stands 

for pseudo, ′𝐿෨ stands for quasi-concircular and 𝑆 stands for symmetric. Moreover, if 𝑎 = 1and 𝑏 = −
ଵ

௡ିଵ
, 

then (𝑄′𝐿෨𝑆) manifolds includes (𝑄𝐿𝑆) introduced by (De and Tarafdar, 1992). 

2. Some Properties of (𝑸𝑪𝑪𝑻), 𝒏 > 3 

Let (𝑄𝐶𝐶𝑇) be flat (1.3) and (2.1), we get 

′𝐿෨(𝑋, 𝑌, 𝑈, 𝑉) = 0.                           (2.1) 

Hence, in view of (1.3) and (2.1), we get 

𝑎. 𝑅(𝑋, 𝑌, 𝑈, 𝑉) = −
௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑌, 𝑈)𝑔(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑔(𝑌, 𝑉) ].                    (2.2) 

Taking a frame field and contracting 𝑌 and 𝑈 in (2.2), we have 

𝑎. 𝑅𝑖𝑐(𝑋, 𝑉) = −
௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ (𝑛 − 1)𝑔(𝑋, 𝑉).                       (2.3) 

Again, contracting 𝑋 and 𝑉 in (2.3), we get 

𝑟[𝑎 + (𝑛 − 1)𝑏] = 0.                          (2.4) 

Hence, from (2.4), we can state the following theorem: 

Theorem (2.1): If the (𝑄𝐶𝐶𝑇) is flat, then then the scalar curvature vanishes, provided 𝑎 + (𝑛 − 1)𝑏 ≠

0. 

Let (𝑄𝐶𝐶𝑇), (𝑛 > 2) be symmetric. That is,   

൫𝐷௑𝐿෨൯(𝑌, 𝑍)𝑈 = 0.                           (2.5) 

Now, differentiating (1.2) covariantly, we get 

൫𝐷௑𝐿෨൯(𝑌, 𝑍)𝑈 =  𝑎(𝐷௑ℛ)(𝑌, 𝑍)𝑈 +
஽೉௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑍, 𝑈)𝑌 − 𝑔(𝑌, 𝑈)𝑍].                       (2.6) 

According to our assumption, we have from (2.5) and (2.6),  

𝑎(𝐷௑ℛ)(𝑌, 𝑍)𝑈 +
஽೉௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑍, 𝑈)𝑌 − 𝑔(𝑌, 𝑈)𝑍] = 0.                         (2.7) 

Contracting (2.7) with respect to 𝑌, we get 

𝑎(𝐷௑𝑅𝑖𝑐)(𝑍, 𝑈) = −
஽೉௥

௡
   [𝑎 + 2(𝑛 − 1)𝑏]𝑔(𝑍, 𝑈).                             (2.8) 

Again, contracting 𝑍 and 𝑈 in (2.8), we get 

𝑑𝑟(𝑋) = 0,   𝑎 + (𝑛 − 1)𝑏 ≠ 0.                        (2.9) 

Conversely, if𝑑𝑟(𝑋) = 0. Then, from (2.8), we get 
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(𝐷௑𝑅𝑖𝑐)(𝑍, 𝑈) = 0, provided  𝑎 ≠ 0.                       (2.10) 

Hence, in view of (2.9) and (2.10), we get  

Theorem (2.2): If the (𝑄𝐶𝐶𝑇), (𝑛 > 2) is symmetric, then then the manifold is Ricci symmetric if and 
only if  𝑑𝑟(𝑋) = 0, provided 𝑎 + (𝑛 − 1)𝑏 ≠ 0. 

Now, contracting (2.6) with respect to 𝑋, we get 

൫𝑑𝑖𝑣𝐿෨൯(𝑌, 𝑍)𝑈 =  𝑎(𝑑𝑖𝑣ℛ)(𝑌, 𝑍)𝑈 +
ଵ

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].     (2.11) 

But we know that  

(𝑑𝑖𝑣𝐿)(𝑌, 𝑍)𝑈 =  (𝑑𝑖𝑣ℛ)(𝑌, 𝑍)𝑈 −
ଵ

௡(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].                (2.12) 

Above equation (2.12) can be put as  

(𝑑𝑖𝑣ℛ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣𝐿)(𝑌, 𝑍)𝑈 +
ଵ

௡(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].                (2.13) 

From (2.11) and (2.13), we get 

൫𝑑𝑖𝑣𝐿෨൯(𝑌, 𝑍)𝑈 =  𝑎(𝑑𝑖𝑣𝐿)(𝑌, 𝑍)𝑈 + 

2[𝑎 + 2(𝑛 − 1)𝑏][𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].                (2.14) 

Hence in view of (2.14), we have the following theorem: 

Theorem (2.3): For the (𝑄𝐶𝐶𝑇), (𝑛 > 2), 𝑑𝑖𝑣𝐿෨  is equal to 𝑑𝑖𝑣𝐿  if and only if 𝑑𝑟(𝑋) = 0,provided 
𝑎 + (𝑛 − 1)𝑏 ≠ 0. 

3. Bianchi’s 2nd identity for ൫𝑷𝑸′𝑳෨𝑺൯, (𝒏 > 2) 

In this section, we prove that in a ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), the (𝑄𝐶𝐶𝑇)𝐿෨ satisfies Bianchi’s 2nd identity. That is  

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) + ൫𝐷௒′𝐿෨൯(𝑍, 𝑋, 𝑈, 𝑉) + ൫𝐷௓′𝐿෨൯(𝑋, 𝑌, 𝑈, 𝑉) = 0.                   (3.1) 

In view of (1.3), (1.4) and (1.6), we get 

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) + ൫𝐷௒′𝐿෨൯(𝑍, 𝑋, 𝑈, 𝑉) + ൫𝐷௓′𝐿෨൯(𝑋, 𝑌, 𝑈, 𝑉) = 

𝐴(𝑈)[′𝐿෨(𝑌, 𝑍, 𝑋, 𝑉) + ′𝐿෨(𝑍, 𝑋, 𝑌, 𝑉) + ′𝐿෨(𝑋, 𝑌, 𝑍, 𝑉)] + 

𝐴(𝑉)[′𝐿෨(𝑌, 𝑍, 𝑈, 𝑋) + ′𝐿෨(𝑍, 𝑋, 𝑈, 𝑌) + ′𝐿෨(𝑋, 𝑌, 𝑈, 𝑍)]                     (3.2) 

Using Bianch’s 1st identity in (3.2), we get 

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) + ൫𝐷௒′𝐿෨൯(𝑍, 𝑋, 𝑈, 𝑉) + ൫𝐷௓′𝐿෨൯(𝑋, 𝑌, 𝑈, 𝑉) = 

𝐴(𝑉)[𝑔(𝑍, 𝑈)𝑔(𝑌, 𝑋) − 𝑔(𝑌, 𝑈)𝑔(𝑍, 𝑋) + 𝑔(𝑋, 𝑈)𝑔(𝑍, 𝑌) 

−𝑔(𝑍, 𝑈)𝑔(𝑋, 𝑌) + 𝑔(𝑌, 𝑈)𝑔(𝑋, 𝑍) − 𝑔(𝑋, 𝑈)𝑔(𝑌, 𝑍)].
ଵ

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ.    

⇒ ൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) + ൫𝐷௒′𝐿෨൯(𝑍, 𝑋, 𝑈, 𝑉) + ൫𝐷௓′𝐿෨൯(𝑋, 𝑌, 𝑈, 𝑉) = 0. 

Thus, we can state the following theorem:  

Theorem (3.1): The quasi-concircular curvature tensor ′𝐿෨ in  ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2) satisfies the Bianchi’s 

2nd identity.  
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         Now, from (1.5), we get 

𝐿ଵ(𝑍, 𝑈) = 𝑎𝑅𝑖𝑐(𝑍, 𝑈) +
௥

௡
[𝑎 + 2(𝑛 − 1)𝑏]𝑔(𝑍, 𝑈).                      (3.3) 

Contacting (3.3), we get 

𝑙ଵ = 2𝑟[𝑎 + (𝑛 − 1)𝑏].                                      (3.4) 

In ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), we have 

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑋)′𝐿෨(𝑋, 𝑍, 𝑈, 𝑉) + 𝐴(𝑍)′𝐿෨(𝑌, 𝑋, 𝑈, 𝑉) 

   + 𝐴(𝑈)′𝐿෨(𝑌, 𝑍, 𝑋, 𝑉) + 𝐴(𝑉)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑋).                                (3.5) 

Contracting 𝑌 and 𝑉 in (3.5), we get 

(𝐷௑𝐿ଵ)(𝑍, 𝑈) = 2𝐴(𝑋)𝐿ଵ(𝑍, 𝑈) + ′𝐿෨(𝑋, 𝑍, 𝑈, 𝜌) + 𝐴(𝑍)𝐿ଵ(𝑋, 𝑈) 

   + 𝐴(𝑈)𝐿ଵ(𝑍, 𝑋) + ′𝐿෨(𝜌, 𝑍, 𝑈, 𝑋).                     (3.6) 

Again contracting 𝑍 and 𝑈 in (3.6), we get 

𝐷௑𝑙ଵ = 2𝐴(𝑋)𝑙ଵ + 4𝐿ଵ(𝑋, 𝜌).                        (3.7) 

From (3.4), we get 

𝐷௑𝑙ଵ = 2[𝑎 + (𝑛 − 1)𝑏](𝐷௑𝑟).                         (3.8) 

Hence, in view of (3.3), (3.4), (3.7) and (3.8), we have 

[𝑎 + (𝑛 − 1)𝑏]𝑑𝑟(𝑋) = 𝐴(𝑋). 2𝑟 ቂ
௔(௡ାଵ)ା(௡ିଵ)(௡ାଶ)௕

௡
ቃ + 2𝑅𝑖𝑐(𝑋, 𝜌).                   (3.9) 

Thus, we can state the following theorem: 

Theorem (3.1): In ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), we have 

[𝑎 + (𝑛 − 1)𝑏]𝑑𝑟(𝑋) = 𝐴(𝑋). 2𝑟 ቂ
௔(௡ାଵ)ା(௡ିଵ)(௡ାଶ)௕

௡
ቃ + 2𝑅𝑖𝑐(𝑋, 𝜌).  

          In particular, if𝑎 = 1 and 𝑏 = −
ଵ

௡ିଵ
, then from (3.9), we get 

𝑅𝑖𝑐(𝑋, 𝜌) =
௥

௡
𝑔(𝑋, 𝜌).                       (3.10) 

Thus, we get, in a (P𝐿𝑆) ,  
௥

௡
 is an eigen values of the Ricci tensor 𝑅𝑖𝑐  and 𝜌  is an eigen vector 

corresponding to this eigen value. Thus we find the De and Tarafdar (1997) result.  

4. Einstein ൫𝑷𝑸′𝑳෨𝑺൯, (𝒏 > 2) 

In this section, we consider Einstein൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2) . Since for every Einstein manifold the scalar 

curvature 𝑟 is constant, hence for Einstein ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), we have  𝑑𝑟(𝑋) = 0. Hence from (3.9), we 

get 

𝐴(𝑋). 𝑟 ቂ
௔(௡ାଵ)ା(௡ିଵ)(௡ାଶ)௕

௡
ቃ + 𝑅𝑖𝑐(𝑋, 𝜌) = 0.                      (4.1) 

For an Einstein manifold (𝑀௡, 𝑔), we have  

𝑅𝑖𝑐(𝑋, 𝑌) =
௥

௡
𝑔(𝑋, 𝑌).                           (4.2) 
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Hence in view of (4.1) and (4.2), we get 

𝐴(𝑋). 𝑟 ቂ𝑎 + (𝑛 − 1)𝑏 +
௔ାଶ(௡ିଵ)௕ାଵ

௡
ቃ = 0.      

If 𝑎 ≠ 0, 𝑏 ≠ 0and𝐴(𝑋) ≠ 0, then 𝑟 = 0. 

Therefore, we can state the following theorem: 

Theorem (4.1): An Einstein ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2) is of zero scalar curvature provided 𝑎 ≠ 0, 𝑏 ≠ 0. 

         If possible, let ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2) be a space of constant curvature. Then we have  

ℛ(𝑋, 𝑌)𝑍 = 𝑘[𝑔(𝑌, 𝑍) − 𝑔(𝑋, 𝑍)𝑌] ,                        (4.3) 

where𝑘 is constant. Contracting 𝑋 in (4.3), we get 

𝑅𝑖𝑐(𝑌, 𝑍) = 𝑘(𝑛 − 1)𝑔(𝑌, 𝑍).                         (4.4) 

Again, contracting 𝑌 and 𝑍 in (4.4), we get 

𝑟 = 𝑘𝑛(𝑛 − 1).                          (4.5) 

Using (4.5) in (4.3), we get 

ℛ(𝑋, 𝑌)𝑍 =
௥

௡(௡ିଵ)
[𝑔(𝑌, 𝑍) − 𝑔(𝑋, 𝑍)𝑌].                       (4.6) 

Since every space of constant curvature is an Einstein manifold, then from Theorem (4.1) we have 𝑟 = 0. 
Hence from (4.6) it follows that ℛ(𝑋, 𝑌)𝑍 = 0 , which is admissible by definitions. This leads to 
following Corollary of the above Theorem under condition 𝑎, 𝑏 ≠ 0 as: 

Corollary (4.2): A ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2) can not be of constant curvature. 

Again, from (1.2), we get 

𝐿෨(𝑋, 𝑌)𝜌 =  𝑎ℛ(𝑋, 𝑌)𝜌 +
௥

௡
ቀ

௔

௡ିଵ
+ 2𝑏ቁ [𝑔(𝑌, 𝜌)𝑋 − 𝑔(𝑋, 𝜌)𝑌 ].                   (4.7) 

First we assume that 𝑟 = 0in ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2). Then from (4.7), we get  

𝐿෨(𝑋, 𝑌)𝜌 =  𝑎ℛ(𝑋, 𝑌)𝜌.                        (4.8) 

Next, we assume that in ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), the relation (4.6) holds. Then from (4.7), we get 

𝑟[𝑎 + 2(𝑛 − 1)𝑏][𝐴(𝑌)𝑋 − 𝐴(𝑋)𝑌 = 0].                      (4.9) 

Hence, equation (4.9) gives 

𝑟 = 0, provided 𝑎 + 2(𝑛 − 1)𝑏 ≠ 0, 𝐴(𝑋) ≠ 0. 

This leads to the following theorem: 

Theorem (4.3): A ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), is of zero scalar curvature if and only if 𝐿෨(𝑋, 𝑌)𝜌 =  𝑎ℛ(𝑋, 𝑌)𝜌 

provided provided 𝑎 + 2(𝑛 − 1)𝑏 ≠ 0. 

5. ൫𝑷𝑸′𝑳෨𝑺൯, (𝒏 > 2)with 𝒅𝒊𝒗𝑳 = 𝟎 

For ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2), we have  

൫𝐷௑′𝐿෨൯(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)′𝐿෨(𝑋, 𝑍, 𝑈, 𝑉) + 𝐴(𝑍)′𝐿෨(𝑌, 𝑋, 𝑈, 𝑉) 
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   + 𝐴(𝑈)′𝐿෨(𝑌, 𝑍, 𝑋, 𝑉) + 𝐴(𝑉)′𝐿෨(𝑌, 𝑍, 𝑈, 𝑋).                    (5.1) 

Equation (5.1) can be written as  

𝑔 ቀ൫𝐷௑𝐿෨൯(𝑌, 𝑍)𝑈, 𝑉ቁ = 2𝐴(𝑋)𝑔൫𝐿෨(𝑌, 𝑍)𝑈, 𝑉൯ + 𝐴(𝑌)𝑔൫𝐿෨(𝑋, 𝑍)𝑈, 𝑉൯ + 

 𝐴(𝑍)𝑔൫𝐿෨(𝑌, 𝑋)𝑈, 𝑉൯ +  𝐴(𝑈)𝑔൫𝐿෨(𝑌, 𝑍)𝑋, 𝑉൯ + 𝑔(𝑉, 𝜌)𝑔൫𝐿෨(𝑌, 𝑍)𝑈, 𝑋൯.                   (5.2) 

where𝐴 is non-zero 1-form, 𝜌 is a vector field defined by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

Put 𝑋 = 𝑉 = 𝑒௜ in (5.2), we get 

൫𝑑𝑖𝑣𝐿෨൯(𝑌, 𝑍)𝑈 = ෍ 𝑔 ቀ൫𝐷௘೔
𝐿෨൯(𝑌, 𝑍), 𝑒௜ቁ

௡

௜ୀଵ

= ෍{2

௡

୧ୀଵ

𝐴(𝑒௜)𝑔൫𝐿෨(𝑌, 𝑍)𝑈, 𝑒௜൯ + 

𝐴(𝑌)𝑔൫𝐿෨(𝑒௜, 𝑍)𝑈, 𝑒௜൯ + 𝐴(𝑍)𝑔൫𝐿෨(𝑌, 𝑒௜)𝑈, 𝑒௜൯ + 

𝐴(𝑈)𝑔൫𝐿෨(𝑌, 𝑍)𝑒௜, 𝑒௜൯ + 𝑔(𝑒௜ , 𝜌)𝑔൫𝐿෨(𝑌, 𝑍)𝑈, 𝑒௜൯ൟ,   

⇒ (𝑑𝑖𝑣𝐿)(𝑌, 𝑍)𝑈 = 3𝐴൫𝐿෨(𝑌, 𝑍)𝑈൯ + 𝐴(𝑌)𝐿ଵ(𝑍, 𝑈) − 𝐴(𝑍)𝐿ଵ(𝑌, 𝑈)                   (5.3) 

Hence, we assume that  

൫𝑑𝑖𝑣𝐿෨൯(𝑌, 𝑍)𝑈 = 0.                          (5.4) 

Hence from (5.3) and (5.4), we get 

3𝐴൫𝐿෨(𝑌, 𝑍)𝑈൯ + 𝐴(𝑌)𝐿ଵ(𝑍, 𝑈) − 𝐴(𝑍)𝐿ଵ(𝑌, 𝑈) = 0.                     (5.5) 

Contracting with respect to 𝑍and 𝑈, we get 

𝐿ଵ(𝑌, 𝜌) + 𝑟. 𝐴(𝑌)[𝑎 + (𝑛 − 1)𝑏] = 0.                        (5.6) 

Hence, from (1.5) and (5.6), we get 

𝑅𝑖𝑐(𝑋, 𝜌) = −
௥[௔(௡ାଵ)ା(௡ିଵ)(௡ାଵ)௕]

௡௔
𝑔(𝑋, 𝜌).                       (5.7) 

Hence from (5.7), we have 

𝑅𝑖𝑐(𝑋, 𝜌) = 𝜆𝑔(𝑋, 𝜌), 

where𝜆 = −
௥[௔(௡ାଵ)ା(௡ିଵ)(௡ାଵ)௕]

௡௔
 is a scalar. Hence in view of the above results we are a position to state 

the following theorem:  

Theorem (5.1): For ൫𝑃𝑄′𝐿෨𝑆൯, (𝑛 > 2)with 𝑑𝑖𝑣𝐿෨ = 0 , 𝜆  is an eigen values of the Ricci tensor 𝑅𝑖𝑐 

corresponding to the eigen vector 𝜌. 
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