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Abstract 

The present paper deals with nearly 𝑊ଶ −symmetric manifold and find some geometrical properties. 
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1.Introduction 

Riemannian symmetric spaces have been an important role in differential geometry. They were first 
classified by Carten (1926) in the late twenties and he also gave a classification of Riemannian symmetric 
spaces. In 1926, Carten studied the certain class of Riemannian spaces and introduced the notion of a 
symmetric spaces. According to him an n-dimensional Riemannian manifold 𝑀  is said to be locally 
symmetric if its curvature tensor 𝑅 satisfies 𝑅௛௜௝௞,௟ = 0, where " , " represents the covariant differentiation 

with respect to the metric tensor and 𝑅௛௜௝௞ are the components of the curvature tensor of the manifold 𝑀. 

This condition of locally symmetric is equivalent to the fact that the local geodesic symmetry 𝐹(𝑝) is an 
isometric Neill (1986) at every point 𝑝 ∈ 𝑀.  

After Carten the notion of locally symmetric manifolds has been reduced by many authors in several ways to 
a different extent such as pseudo-symmetric manifolds introduced by Chaki (1987), recurrent manifolds 
introduced by Walker (1957), conformally symmetric manifold introduced by Chaki and Gupta (1965), 
Conformally recurrent manifolds, introduced by Adati and Miyazawa (1967), weakly symmetric manifolds 
introduced by Tamassy and Binh (1989) etc. 

A non-flat pseudo-Riemannian manifold (𝑀௡, 𝑔) (𝑛 > 2) is said to be a pseudo symmetric Chaki (1987) if 
its curvature tensor 𝑅 of the type (0,4) satisfies the condition: 

(𝐷௑𝑅)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)𝑅(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)𝑅(𝑋, 𝑍, 𝑈, 𝑉) + 𝐴(𝑍)𝑅(𝑌, 𝑋, 𝑈, 𝑉) 

+ 𝐴(𝑈)𝑅(𝑌, 𝑍, 𝑋, 𝑉) + 𝐴(𝑉)𝑅(𝑌, 𝑍, 𝑈, 𝑋),              (1.1) 

where 𝐴 is a non-zero 1-form, 𝜌 is a vector field by 𝑔(𝑋, 𝜌) = 𝐴(𝑋) for all 𝑋, 𝐷 denotes the operator of 
covariant differentiation with respect to the metric 𝑔  and 𝑅(𝑌, 𝑍, 𝑈, 𝑉) = 𝑔(ℝ(𝑌, 𝑍) 𝑈, 𝑉) where ℝ is the 
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curvature tensor of the type (1,3). The 1-form 𝐴 is called the associated 1-form of the manifold. If 𝐴 = 0 then 
the manifold reduces to a locally symmetry manifold in the sense of Carten. 

An n-dimensional pseudo symmetric manifold is denoted by (𝑃𝑆)௡. It should be taken into account that the 
notation of pseudo symmetric manifold studied in particular by Deszez (1987, 1992, 2002 and 2008) differ 
from that of Chaki (1987). Gray (1978) introduced two groups of Riemannian manifolds based on the 
covariant differentiation of the Ricci tensor. The first group contains all Riemannian manifold whose Ricci 
tensor 𝑅𝑖𝑐 is a Codazzi type tensor, that is  

(𝐷௑𝑅𝑖𝑐)(𝑌, 𝑍) = (𝐷௒𝑅𝑖𝑐)(𝑋, 𝑍).                 (1.2) 

The second group contains all Riemannian manifolds whose Ricci tensor 𝑅𝑖𝑐 is cyclic parallel, that is  

(𝐷௑𝑅𝑖𝑐)(𝑌, 𝑍) + (𝐷௒𝑅𝑖𝑐)(𝑍, 𝑋) + (𝐷௓𝑅𝑖𝑐)(𝑋, 𝑌) = 0.               (1.3) 

In 1970, Pokhariyal and Mishra were introduced a new tensor field, called 𝑊ଶ −curvature tensor in a 
Riemannian manifold and studied their properties. According to them a 𝑊ଶ − curvature tensor in a 
Riemannian manifold  (𝑀௡, 𝑔) (𝑛 > 2) defined by Pokhariyal and Mishra (1970) 

𝑊ଶ(𝑋, 𝑌)𝑍 = ℝ(𝑋, 𝑌)𝑍 +  
ଵ

(௡ିଵ)
[𝑔(𝑋, 𝑍)𝑄𝑌 − 𝑔(𝑌, 𝑍)𝑄𝑋],                    (1.4) 

whereℝ is the Riemannian curvature tensor of the type (1,3) and 𝑅𝑖𝑐 is the Ricci tensor of the type (0,2). The 
𝑊ଶ −curvature tensor defined by Pokhariayal and Mishra (1970) has been widely studied in differential 
geometry as well as in the spacetime of general Relativity. Matsumoto and Mihai (1986) and Pokhariyal 
(1982) studied 𝑊ଶ −curvature tensor for P-Sasakian manifold and Sasakian manifold and many others. 
Shaikh, Jana and Eyasmin (2007) have introduced the notion of weakly 𝑊ଶ −symmetric manifold and 
obtained their properties. Moreover Yildiz and De (2010) have studied this tensor in Kenmotsu manifolds 
while Taleshian, Hosseinz-deh (2010) considered 𝑁(𝐾) −quasi Einstein manifolds satisfying the condition 
ℝ(𝜉, 𝑋)𝑊ଶ = 0 . Further Venkatesha, Bagewadi, and Kumar (2011) have studied LP-Sasakian manifold 
satisfying some condition on 𝑊ଶ −curvature tensor. Ahsan and Ali  (2017) have studied spacetime satisfying 
Einstein field equations with vanishing of 𝑊ଶ −curvature as well as existence of killing and conformal killing 
vector fields. Further, the vanishing and divergence of 𝑊ଶ −curvature have also been studied by in perfect 
fluid spacetime. The 𝑃 −curvature have been defined by breaking 𝑊ଶ −curvature tensor is skew-symmetric 
part and some of its properties have been studied Pokhariyal and Mishra (1970) and Pokhariyal (2000). 
Further, 𝑊ଶ −curvature tensor was shown to extend Pirani formulation of gravitational waves to Einstein 
space Pokhariyal (1982). 

In 2012, Mantica and Molinari defined a generalized (0,2) symmetric ℤ −tensor as     

ℤ(𝑋, 𝑌) = 𝑅𝑖𝑐(𝑋, 𝑌) + 𝜙𝑔(𝑋, 𝑌),                  (1.5) 

where𝜙 is an arbitrary scalar function. In Mantica and Suh (2012, 2014) various properties of  the ℤ −tensor 
were pointed out. 

Subsequently, Mantica and Suh (2013) introduced a new curvature tensor of type (1,3) in an n-dimensional 
Riemannian manifold (𝑀௡, 𝑔) (𝑛 > 2) denoted by 𝑄 and defined by  

𝑄(𝑋, 𝑌)𝑊 = ℝ(𝑋, 𝑌)𝑊 −  
ట

(௡ିଵ)
[𝑔(𝑌, 𝑊)𝑋 − 𝑔(𝑋, 𝑊)𝑌],                    (1.6) 
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where𝜓 is an arbitrary scalar function. Such a tensor 𝑄 is known as 𝑄 −curvature tensor. The notion of 
𝑄 −tensor is also suitable to excavated some-differential structures on a Riemannian manifold. 

Recently, De and Majhi published a paper intitled “On semi-pseudo-projective symmetric manifolds” in 
which they introduced the semi-projective curvature tensor ℙ of type (1,3) as follows  

ℙ(𝑋, 𝑌)𝑈 = ℝ(𝑋, 𝑌)𝑈 −  
థ

(௡ିଵ)
[𝑅𝑖𝑐(𝑌, 𝑈)𝑋 − 𝑅𝑖𝑐(𝑋, 𝑈)𝑌],                       (1.7) 

where𝜙 is an arbitrary scalar function. In particular if 𝜙 = 1, then semi-projective curvature tensor reduced 
to projective curvature tensor 𝕎(𝑋, 𝑌)𝑍 Neil (1983). This justify the name semi-projective curvature tensor. 
If 𝜙 = 0, then semi-projective curvature tensor and curvature tensor are equivalent. Motivation of above 
studies in the present paper we define nearly 𝑊ଶ −curvature tensor of the type (1,3) as follows: 

𝕎ଶ(𝑋, 𝑌)𝑈 = ℝ(𝑋, 𝑌)𝑈 − 
థ

(௡ିଵ)
[𝑔(𝑌, 𝑈)𝑄𝑋 − 𝑔(𝑋, 𝑈)𝑄𝑌],                   (1.8) 

where𝜙 is an arbitrary scalar function. We prefer the name “Nearly 𝑊ଶ −curvature tensor ”; since it is clear 
that if 𝜙 = 1, nearly 𝑊ଶ −curvature tensor reduces to 𝑊ଶ −curvature tensor Pokhariyal and Mishra (1970). 

We can express (1.8) as follows: 

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) = ′ℝ(𝑋, 𝑌, 𝑈, 𝑉) − 
థ

(௡ିଵ)
[𝑔(𝑌, 𝑈)𝑅𝑖𝑐(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑅𝑖𝑐(𝑌, 𝑉)],                    (1.9) 

where ′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) = 𝑔(𝕎ଶ(𝑋, 𝑌)𝑈, 𝑉) and   ′ℝ(𝑋, 𝑌, 𝑈, 𝑉) = 𝑔(ℝ(𝑋, Y)𝑈, 𝑉).  

A non-flat pseudo-Riemannian manifold (𝑀௡, 𝑔) (𝑛 > 2) is said to be pseudo nearly 𝑊ଶ symmetric manifold 
if the nearly 𝑊ଶ −curvature tensor of type (0,4) satisfies the condition: 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)′𝕎ଶ(𝑋, 𝑍, 𝑈, 𝑉) + 

𝐴(𝑍)′𝕎ଶ(𝑌, 𝑋, 𝑈, 𝑉) +  𝐴(𝑈)′𝕎ଶ(𝑌, 𝑍, 𝑋, 𝑉) +  

 𝐴(𝑉) ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋),              (1.10) 

where𝐴 is a non-zero 1-form, 𝜌 is a vector field by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

An n-dimensional pseudo nearly 𝑊ଶ −symmetric manifold is denoted by (𝑃𝑁𝕎ଶ𝑆)௡  where 𝑃  stands for 
pseudo, 𝑁𝕎ଶ stands for nearly 𝑊ଶ and 𝑆 stands for symmetric. If 𝜙 = 0, then pseudo nearly 𝑊ଶ symmetric 
manifold reduces to pseudo-symmetric manifolds introduced by Chaki (1987). Moreover, if 𝜙 = 1, then 
pseudo nearly 𝑊ଶ −symmetric manifold includes pseudo 𝑊ଶ −symmetric manifold (𝑃𝑊ଶ𝑆)௡ introduced by 
De and Ghosh (1994). The present paper organized as follows: 

After introduction in section 2, we study some basic geometric properties of nearly 𝑊ଶ −curvature. 
Section 3 is devoted to study of curvature property of (𝑃𝑁𝕎ଶ𝑆)௡ . In section 4, we study (𝑃𝑁𝕎ଶ𝑆)௡ 
admitting Codazzi type Ricci tensor. Section 5 and 6 deals with Einstein (𝑃𝑁𝕎ଶ𝑆)௡ and (𝑃𝑁𝕎ଶ𝑆)௡ with 
𝑑𝑖𝑣𝕎ଶ = 0 respectively. Section 7 is devoted to study of (𝑃𝑁𝕎ଶ𝑆)௡   admitting parallel vector field𝜌 . 
Among others we prove that in (𝑃𝑁𝕎ଶ𝑆)௡if the associated vector field 𝜌 is unit vector field, then either the 
manifold reduces to a pseudo symmetric manifold or pseudo 𝑊ଶ −symmetric manifold. 

2. Preliminaries  
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Let 𝑅𝑖𝑐 and 𝑟 denote the Ricci tensor of the type (0,2) and the scalar curvature respectively and 𝑄 denote the 
symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor 𝑅𝑖𝑐, that is  

𝑔(𝑄𝑋, 𝑌) = 𝑅𝑖𝑐(𝑋, 𝑌).                   (2.1) 

In this section, some basic formulae are derived, which will be useful to the study of (𝑃𝑁𝕎ଶ𝑆)௡ . In 
(𝑃𝑁𝕎ଶ𝑆)௡, let {𝑒௜} be an orthonormal basis of the tangent space  at each point  of the manifold where 
1 ≤ 𝑖 ≤ 𝑛. The Ricci tensor 𝑅𝑖𝑐 is defined by 𝑅𝑖𝑐(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝑋, 𝑒௜)𝑒௜, 𝑌)௡

௜ୀଵ . 

From (1.8) we can easily verify that the tensor 𝕎ଶ satisfies the following properties: 

𝕎ଶ(𝑋, 𝑌)𝑈 + 𝕎ଶ(𝑌, 𝑋)𝑈 = 0,
𝑎𝑛𝑑

𝕎ଶ(𝑋, 𝑌)𝑈 + 𝕎ଶ(𝑌, 𝑈)𝑋 + 𝕎ଶ(𝑈, 𝑋)𝑌 = 0.
ൡ                 (2.2) 

From (1.8), we obtain  

∑ ′𝕎ଶ(𝑋, 𝑌, 𝑒௜ , 𝑒௜)௡
௜ୀଵ = ∑ ′𝕎ଶ(𝑒௜, 𝑒௜, 𝑈, 𝑉) = 0௡

௜ୀଵ ,                (2.3) 

∑ ′𝕎ଶ(𝑒௜, 𝑌, 𝑈, 𝑒௜)௡
௜ୀଵ = ቀ1 +

థ

௡ିଵ
ቁ 𝑅𝑖𝑐(𝑌, 𝑈) −

థ௥

௡ିଵ
𝑔(𝑌, 𝑈) = 𝕎ଷ(𝑌, 𝑈),           (2.4) 

∑ ′𝕎ଶ(𝑋, 𝑒௜, 𝑒௜, 𝑉)௡
௜ୀଵ = (1 − 𝜙)𝑅𝑖𝑐(𝑋, 𝑉) = 𝕎ସ(𝑋, 𝑉),              (2.5)   

where𝑟 = ∑ 𝑅𝑖𝑐(𝑒௜ , 𝑒௜)௡
௜ୀଵ , is the scalar curvature tensor. 

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) + ′𝕎ଶ(𝑌, 𝑋, 𝑈, 𝑉) = 0,      

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) + ′𝕎ଶ(𝑋, 𝑌, 𝑉, 𝑈) ≠ 0,  

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) − ′𝕎ଶ(𝑈, 𝑉, 𝑋, 𝑌) ≠ 0,       

and 

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) + ′𝕎ଶ(𝑌, 𝑈, 𝑋, 𝑉) + ′𝕎ଶ(𝑈, 𝑋, 𝑌, 𝑉) = 0.            (2.6) 

Proposition (2.1): A Riemannian manifold is nearly 𝑊ଶ −flat if and only if it is of constant curvature, 
provided the scalar curvature is non-zero. 

Proof:  Nearly 𝑊ଶ −curvature tensor of the type (0,4) is given by  

′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) = ′ℝ(𝑋, 𝑌, 𝑈, 𝑉) − 
థ

(௡ିଵ)
[𝑔(𝑌, 𝑈)𝑅𝑖𝑐(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑅𝑖𝑐(𝑌, 𝑉)],                   (2.7) 

where𝜙 is an arbitrary scalar function. If nearly 𝑊ଶ −curvature vanishes then  

′ℝ(𝑋, 𝑌, 𝑈, 𝑉) =  
థ

(௡ିଵ)
[𝑔(𝑌, 𝑈)𝑅𝑖𝑐(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑅𝑖𝑐(𝑌, 𝑉)].             (2.8) 

Contracting (2.8), we get 

 𝑅𝑖𝑐(𝑌, 𝑈) =
థ௥

௡ିଵାథ
𝑔(𝑌, 𝑈).                 (2.9) 

Again contraction (2.9), we get  

 𝑟. (𝑛 − 1). (𝜙 − 1) = 0.                (2.10) 

Hence, from (2.10), we get either 𝑟 = 0or 𝜙 = 1. For 𝑟 = 0, we get 
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 ′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑉) = ′ℝ(𝑋, 𝑌, 𝑈, 𝑉), 

that is the nearly 𝑊ଶ −curvature tensor is equal to the curvature tensor ′ℝ. Also for 𝜙 = 1, the nearly 
𝑊ଶ −curvature tensor is equal to 𝑊ଶ −curvature tensor. Thus we can say that nearly 𝑊ଶ −flatness and 
𝑊ଶ −flatness are equivalent. It is known Mishra and Pokhariyal (1970) that in a Riemainnian manifold is 
′𝑊ଶ −flat if and only if it is space of constant curvature. Therefore a Riemannian manifold is nearly 𝑊ଶ −flat 
if and only if it is a manifold of constant curvature, provided the scalar curvature is non-zero. This completes 
the proof. 

Proposition (2.2): If the nearly 𝑊ଶ −curvature tensor is symmetric in the sense of Carten, then the manifold 
reduces to Ricci symmetric. 

Proof: From (1.8), we get 

𝕎ଶ(𝑌, 𝑍)𝑈 = ℝ(𝑌, 𝑍)𝑈 −  
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑄𝑌 − 𝑔(𝑌, 𝑈)𝑄𝑍],                  (2.11) 

where𝜙 is an arbitrary scalar function. 

Differentiating covariantly (2.11), we get 

(𝐷௑𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝐷௑ℝ)(𝑌, 𝑍)𝑈 −
𝑑𝜙(𝑋)

(𝑛 − 1)
[𝑔(𝑍, 𝑈)𝑄𝑌 − 𝑔(𝑌, 𝑈)𝑄𝑍] − 

  
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)(𝐷௑𝑄)𝑌 − 𝑔(𝑌, 𝑈)(𝐷௑𝑄)𝑍].                                                (2.12) 

Here we assume that nearly 𝑊ଶ −curvature tensor is symmetric, hence from (2.12), we get 

(𝐷௑ℝ)(𝑌, 𝑍)𝑈 =  
𝑑𝜙(𝑋)

(𝑛 − 1)
[𝑔(𝑍, 𝑈)𝑄𝑌 − 𝑔(𝑌, 𝑈)𝑄𝑍] + 

  
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)(𝐷௑𝑄)𝑌 − 𝑔(𝑌, 𝑈)(𝐷௑𝑄)𝑍].                    (2.13)                   

   

Contraction (2.13), with respect to 𝑈, we get 

(𝐷௑𝑅𝑖𝑐)(𝑌, 𝑍) =  0.                                (2.14) 

This proves the theorem. 

Proposition (2.3): For a nearly 𝑊ଶ −curvature tensor (𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣𝑊ଶ)(𝑌, 𝑍)𝑈 if and only if 𝑟 is 
constant, provided 𝜙 is constant. 

Proof: From (1.8), we get 

𝕎ଶ(𝑌, 𝑍)𝑈 = ℝ(𝑌, 𝑍)𝑈 −  
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑄𝑌 − 𝑔(𝑌, 𝑈)𝑄𝑍].                 (2.15) 

Differentiating (2.15)  covariantly with respect to 𝑋,  we get 

(𝐷௑𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝐷௑ℝ)(𝑌, 𝑍)𝑈 −
𝑑𝜙(𝑋)

(𝑛 − 1)
[𝑔(𝑍, 𝑈)𝑄𝑌 − 𝑔(𝑌, 𝑈)𝑄𝑍] − 

  
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)(𝐷௑𝑄)𝑌 − 𝑔(𝑌, 𝑈)(𝐷௑𝑄)𝑍].                                             (2.16) 
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Contracting (2.16) with respect to 𝑋,  we get 

(𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣ℝ)(𝑌, 𝑍)𝑈 −
1

(𝑛 − 1)
[𝑔(𝑍, 𝑈)𝜙(𝑄𝑌) − 𝑔(𝑌, 𝑈)𝜙(𝑄𝑍)] 

  −
థ

(௡ିଵ)
[𝑔(𝑍, 𝑈)(𝑑𝑖𝑣𝑄)(𝑌) − 𝑔(𝑌, 𝑈)(𝑑𝑖𝑣𝑄)(𝑍)].                                 (2.17) 

Making the use of (𝑑𝑖𝑣𝑄)(𝑌) =
ଵ

ଶ
𝑑𝑟(𝑌) and 𝜙 is constant in (2.17), we get 

(𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣ℝ)(𝑌, 𝑍)𝑈 −
థ

ଶ(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].                      (2.18) 

Equation (2.18) can be written as 

(𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣𝑊ଶ)(𝑌, 𝑍)𝑈 +
(ଵିథ)

ଶ(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)].                    (2.19) 

From (2.19), we see that if 

 (𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍)𝑈 = (𝑑𝑖𝑣𝑊ଶ)(𝑌, 𝑍)𝑈,                 (2.20) 

then 

(ଵିథ)

ଶ(௡ିଵ)
[𝑔(𝑍, 𝑈)𝑑𝑟(𝑌) − 𝑔(𝑌, 𝑈)𝑑𝑟(𝑍)] = 0.                        (2.21) 

Hence from (2.21), we see that 𝑟 is constant. Conversely, if 𝑟 is constant then from (2.19), we get (2.20). this 
proves the preposition (2.3). 

3. Bianchi’s 2nd identity of (𝑷𝑵𝕎𝟐𝑺)𝒏, (𝒏 > 2) 

In this section we prove that in a (𝑃𝑁𝕎ଶ𝑆)௡, the nearly  𝑊ଶ −curvature 𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) satisfies Bianchi’s 
2nd identity, that is  

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷௓′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 0. 

From (1.10), we get 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷௓′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 

𝐴(𝑈)[ ′𝕎ଶ(𝑌, 𝑍, 𝑋, 𝑉) +  ′𝕎ଶ(𝑍, 𝑋, Y, 𝑉)  +  ′𝕎ଶ(𝑋, 𝑌, 𝑍, 𝑉)] + 

𝐴(𝑉)[ ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋) +  ′𝕎ଶ(𝑍, 𝑋, 𝑈, 𝑌)  +  ′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑍)].              (3.1) 

Using (2.6) in (3.1), we get 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷௓′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 

𝐴(𝑉)[ ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋) +  ′𝕎ଶ(𝑍, 𝑋, 𝑈, 𝑌)  +  ′𝕎ଶ(𝑋, 𝑌, 𝑈, 𝑍)].              (3.2) 

Again using (1.9) in (3.2), we get 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷୞′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 0.               (3.3)  

Hence from (3.3), we can state the following: 

Theorem (3.1):A nearly  𝑊ଶ −curvature 𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉), (𝑛 > 2) satisfies Bianchi’s 2nd identity. 
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4. (𝑷𝑵𝕎𝟐𝑺)𝒏, (𝒏 > 2)with Codazzi type Ricci tensor 

From (1.9), we get 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷௓′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 

−
𝜙

𝑛 − 1
[(𝐷௑𝑅𝑖𝑐)(𝑌, 𝑉)𝑔(𝑍, 𝑈) − (𝐷௑𝑅𝑖𝑐)(𝑍, 𝑉)𝑔(𝑌, 𝑈) + (𝐷௒𝑅𝑖𝑐)(𝑍, 𝑉)𝑔(𝑋, 𝑈) 

−(𝐷௒𝑅𝑖𝑐)(𝑋, 𝑉)𝑔(𝑍, 𝑈) + (𝐷௓𝑅𝑖𝑐)(𝑋, 𝑉)𝑔(𝑌, 𝑈) − (𝐷௓𝑅𝑖𝑐)(𝑌, 𝑉)𝑔(𝑋, 𝑈)] 

−
(𝑋𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑌, 𝑉)𝑔(𝑍, 𝑈) − 𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑌, 𝑈)] −

(𝑌𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑋, 𝑈) 

−𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑍, 𝑈)] −
(௓థ)

௡ିଵ
[𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑌, 𝑈) − 𝑅𝑖𝑐(𝑌, 𝑉)𝑔(𝑋, 𝑈)].             (4.1) 

We assume that (𝑃𝑁𝕎ଶ𝑆)௡ admits Codazzi type Ricci tensor, then we have from (1.2) and (4.1), we get  

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) + (𝐷௒′𝕎ଶ)(𝑍, 𝑋, 𝑈, 𝑉) + (𝐷௓′𝕎ଶ)(𝑋, 𝑌, 𝑈, 𝑉) = 

−
(𝑋𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑌, 𝑉)𝑔(Z, 𝑈) − 𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑌, 𝑈)] −

(𝑌𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑋, 𝑈) 

−𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑍, 𝑈)] −
(௓థ)

௡ିଵ
[𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑌, 𝑈) − 𝑅𝑖𝑐(𝑌, 𝑉)𝑔(𝑋, 𝑈)].             (4.2) 

From (3.3) and (4.2), we get 

−
(𝑋𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑌, 𝑉)𝑔(𝑍, 𝑈) − 𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑌, 𝑈)] −

(𝑌𝜙)

𝑛 − 1
[𝑅𝑖𝑐(𝑍, 𝑉)𝑔(𝑋, 𝑈) 

−𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑍, 𝑈)] −
(௓థ)

௡ିଵ
[𝑅𝑖𝑐(𝑋, 𝑉)𝑔(𝑌, 𝑈) − 𝑅𝑖𝑐(𝑌, 𝑉)𝑔(𝑋, 𝑈)] = 0.            (4.3) 

Contracting (4.3) with respect to 𝑌and𝑈, we get 

(𝑋𝜙)𝑅𝑖𝑐(𝑉, 𝑍) = (𝑍𝜙)𝑅𝑖𝑐(𝑋, 𝑉).                (4.4) 

Again contracting (4.4) with respect to 𝑍and𝑉, we get 

(𝑋𝜙)𝑟 = 𝑔(𝑔𝑟𝑎𝑑𝜙, 𝑄𝑋).                            (4.5) 

From (4.5), we get 

𝑅𝑖𝑐(𝑔𝑟𝑎𝑑𝜙, 𝑋) = 𝑟. 𝑔(𝑔𝑟𝑎𝑑𝜙, 𝑋).               (4.6) 

Equation (4.6) says that 𝑟 is an eigenvalue of 𝑅𝑖𝑐 corresponding to the eigenvector for  𝑔𝑟𝑎𝑑𝜙.Thus we 
conclude the following theorem: 

Theorem (4.1): For a (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) with Codazzi type Ricci tensor, 𝑟  is an eigenvalue of 𝑅𝑖𝑐 
corresponding to the eigenvector for 𝑔𝑟𝑎𝑑𝜙. 

If 𝜙 is constant, then from (4.1) and (3.3), we get 

(𝐷௑𝑅𝑖𝑐)(𝑌, 𝑉)𝑔(𝑍, 𝑈) − (𝐷௑𝑅𝑖𝑐)(𝑍, 𝑉)𝑔(𝑌, 𝑈) + (𝐷௒𝑅𝑖𝑐)(𝑍, 𝑉)𝑔(𝑋, 𝑈) 

−(𝐷௒𝑅𝑖𝑐)(𝑋, 𝑉)𝑔(𝑍, 𝑈) + (𝐷௓𝑅𝑖𝑐)(𝑋, 𝑉)𝑔(𝑌, 𝑈) − (𝐷௓𝑅𝑖𝑐)(𝑌, 𝑉)𝑔(𝑋, 𝑈) = 0.                        (4.7)  
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Contracting (4.7), we get 

(𝐷௑𝑅𝑖𝑐)(𝑍, 𝑉) = (𝐷௓𝑅𝑖𝑐)(𝑋, 𝑉).                  (4.8) 

Hence we can state the following Corollary: 

Corollary (4.1): In a (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) the Ricci tensor is of Codazzi type, provided 𝜙 is constant. 

Now from (2.5), we get 

𝕎ସ(𝑋, 𝑉) = (1 − 𝜙)𝑅𝑖𝑐(𝑋, 𝑉).                  (4.9) 

Contracting (4.9), we get 

𝕎ସ = (1 − 𝜙)𝑟.                 (4.10) 

In (𝑃𝑁𝕎ଶ𝑆)௡, 𝑛 > 2) the nearly 𝑊ଶ −curvature tensor satisfies the following relation: 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)′𝕎ଶ(𝑋, 𝑍, 𝑈, 𝑉) + 

𝐴(𝑍)′𝕎ଶ(𝑌, 𝑋, 𝑈, 𝑉) +  𝐴(𝑈)′𝕎ଶ(𝑌, 𝑍, 𝑋, 𝑉) +  

 𝐴(𝑉) ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋).              (4.11) 

where𝐴 is a non-zero 1-form, 𝜌 is a vector field by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

Contraction (4.11), we get 

(𝐷௑′𝕎ସ)(𝑌, 𝑉) = 2𝐴(𝑋)′𝕎ସ(𝑌, 𝑉) + 𝐴(𝑌)′𝕎ସ(𝑋, 𝑉) + ′𝕎ସ(𝑌, 𝑋, 𝜌, 𝑉) 

+ ′𝕎ସ(𝑌, 𝜌, 𝑋, 𝑉) + 𝐴(𝑉) ′𝕎ସ(𝑌, 𝑍, 𝑈, 𝑋).             (4.12) 

Again contraction (4.12), we get 

𝐷௑′𝕎ସ = 2𝐴(𝑋)′𝕎ସ(𝑌, 𝑉) + 2′𝕎ସ(𝑋, 𝜌) + 2′𝕎ଷ(𝑋, 𝜌) .            (4.13) 

From (4.9), (4.10), (4.13) and (2.4), we get 

(1 − 𝜙)𝑑𝑟(𝑋) − 𝑑𝜙(𝑋)𝑟 = 2𝐴(𝑋)(1 − 𝜙)𝑟 + 2(1 − 𝜙)𝑅𝑖𝑐(𝑋, 𝜌) 

+ 2 ቂቀ1 +
థ

௡ିଵ
ቁ 𝑅𝑖𝑐(𝑋, 𝜌) −

థ

௡ିଵ
𝑟𝐴(𝑋)ቃ .           (4.14) 

Simplification of (4.14) yields 

(1 − 𝜙)𝑑𝑟(𝑋) − 𝑑𝜙(𝑋)𝑟 = 2 ቂ(1 − 𝜙)𝑟 −
௥థ

௡ିଵ
ቃ 𝐴(𝑋) + 2 ቂ(2 − 𝜙) +

థ

௡ିଵ
ቃ 𝑅𝑖𝑐(𝑋, 𝜌).          (4.15) 

Hence, we have the following theorem: 

Theorem (4.2): In (𝑃𝑁𝕎ଶ𝑆)௡, 𝑛 > 2 the following identity hold: 

(1 − 𝜙)𝑑𝑟(𝑋) − 𝑑𝜙(𝑋)𝑟 = 2 ቂ(1 − 𝜙)𝑟 −
௥థ

௡ିଵ
ቃ 𝐴(𝑋) + 2 ቂ(2 − 𝜙) +

థ

௡ିଵ
ቃ 𝐴(𝑄𝑋). 

5. Einstein (𝑷𝑵𝕎𝟐𝑺)𝒏, (𝒏 > 2) 

In this section we consider Einstein (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2). Since for every Einstein manifold the scalar 
curvature 𝑟 is constant, hence for Einstein (𝑃𝑁𝕎ଶ𝑆)௡: we have 𝑑𝑟(𝑋) = 0. Therefore, from (4.15), we have         
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−𝑑𝜙(𝑋)𝑟 = 2 ቂ(1 − 𝜙)𝑟 −
௥థ

௡ିଵ
ቃ 𝐴(𝑋) + 2 ቂ(2 − 𝜙) +

థ

௡ିଵ
ቃ 𝑅𝑖𝑐(𝑋, 𝜌).              (5.1) 

For Einstein manifold, we have  𝑅𝑖𝑐(𝑋, 𝑌) =
௥

௡
𝑔(𝑋, 𝑌), 

−𝑑𝜙(𝑋)𝑟 = 2(1 − 𝜙) ቀ1 +
ଶ

௡
ቁ 𝐴(𝑋)𝑟.                  (5.2) 

Hence 𝜙 is constant, then𝑟 = 0, provided 𝐴(𝑋) ≠ 0.  

Hence we can state the following theorem: 

Theorem (5.1): An Einstein (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) is of zero scalar curvature provided 𝜙 is constant. 

If possible, let (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) be a space of constant curvature. Then we have  

ℝ(𝑋, 𝑌)𝑍 = 𝑘[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].                (5.3) 

where𝑘 is a constant. Contracting 𝑋 in (5.3), we get 

𝑅𝑖𝑐(𝑌, 𝑍) = 𝑘(𝑛 − 1)𝑔(𝑌, 𝑍).                 (5.4) 

Again, contraction (5.4), we get 

𝑟 = 𝑘𝑛(𝑛 − 1).                  (5.5) 

Using (5.5) in (5.3), we get 

ℝ(𝑋, 𝑌)𝑍 =
௥

௡(௡ିଵ)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].              (5.6) 

Since every space of constant curvature is Einstein manifold, then from Theorem (5.1), we get 𝑟 = 0. Hence 
from (5.6) it follows that ℝ(𝑋, 𝑌)𝑍 = 0, which is in admissible by definition. This gives the following 
theorem: 

Theorem (5.2): A (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) cannot be of the constant curvature provided 𝜙 is constant. 

6. (𝑷𝑵𝕎𝟐𝑺)𝒏, (𝒏 > 2)with𝒅𝒊𝒗𝕎𝟐 = 𝟎 

For (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2), we have from (1.10), we get 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)′𝕎ଶ(𝑋, 𝑍, 𝑈, 𝑉) + 

𝐴(𝑍)′𝕎ଶ(𝑌, 𝑋, 𝑈, 𝑉) +  𝐴(𝑈)′𝕎ଶ(𝑌, 𝑍, 𝑋, 𝑉) +  

 𝐴(𝑉) ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋),                (6.1) 

where𝐴 is a non-zero 1-form, 𝜌 is a vector field by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

Contracting of (6.1) gives 

(𝑑𝑖𝑣𝕎ଶ)(𝑌, 𝑍, U) = 3𝐴൫𝕎ଶ(𝑌, 𝑍, 𝑈)൯ + 𝐴(𝑌)𝕎ଷ(𝑍, 𝑈) − 

𝐴(𝑍)𝕎ଷ(𝑌, 𝑈).                  (6.2) 

According to our assumption𝑑𝑖𝑣𝕎ଶ = 0, we get 

3′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)𝕎ଷ(𝑍, 𝑈) − 𝐴(𝑍)𝕎ଷ(𝑌, 𝑈) = 0.             (6.3) 
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Contracting (6.3) with respect to 𝑍and 𝑈, we get 

3𝕎ସ(𝑌, 𝑉) + 𝐴(𝑌)𝕎ଷ(𝑒௜, 𝑒௜) − 𝐴(𝑒௜)𝕎ଷ(𝑌, 𝑒௜) = 0.             (6.4) 

From (6.4), (2.4) and (2.5), we get 

𝑅𝑖𝑐(𝑌, 𝜌) =
[(௡ିଶ)థି(௡ିଵ)]

(ଶିଷథ)(௡ିଵ)ିథ
. 𝑔(𝑌, 𝜌). 𝑟.                  (6.5)  

Equation (6.5) can be written as  

𝑅𝑖𝑐(𝑌, 𝜌) = 𝜆𝑔(𝑌, 𝜌),                   (6.6)  

where𝜆 =
[(௡ିଶ)థି(௡ିଵ)]௥

(ଶିଷథ)(௡ିଵ)ିథ
. Hence in view of (6.6), we have the following theorem: 

Theorem (6.1): For a (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2)with 𝑑𝑖𝑣𝕎ଶ = 0 , 𝜆  is eigenvalue of the Ricci tensor 𝑅𝑖𝑐 
corresponding to the eigenvector 𝜌. 

7. (𝑷𝑵𝕎𝟐𝑺)𝒏, (𝒏 > 2)Admitting a parallel vector field  

In this section, we obtain condition for a (𝑃𝑁𝕎ଶ𝑆)௡ to be a (𝑃𝑆)௡or (𝑃𝑊ଶ𝑆)௡. For this we require a notion 
of parallel vector field defined as follows: 

A vector field 𝑉∗ is said to parallel Ficken (1939) if  

𝐷௑𝑉∗ = 0.                    (7.1) 

We now suppose that a (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2) admitting a unit parallel vector field 𝜌 such that  

𝐷௑𝜌 = 0.                    (7.2) 

Applying Ricci identity to (7.2), we have 

ℝ(𝑋, 𝑌)𝜌 = 0.                   (7.3) 

Contracting 𝑌 in (7.3), we get 

𝑅𝑖𝑐(𝑋, 𝜌) = 0.                   (7.4) 

From (2.5) and (7.4), we get 

𝕎ସ(𝑋, 𝜌) = (1 − 𝜙)𝑅𝑖𝑐(𝑋, 𝜌) = 0.                 (7.5) 

Again definition of (𝑃𝑁𝕎ଶ𝑆)௡,  we have 

(𝐷௑′𝕎ଶ)(𝑌, 𝑍, 𝑈, 𝑉) = 2𝐴(𝑋)′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑉) + 𝐴(𝑌)′𝕎ଶ(𝑋, 𝑍, 𝑈, 𝑉) + 

𝐴(𝑍)′𝕎ଶ(𝑌, 𝑋, 𝑈, 𝑉) +  𝐴(𝑈)′𝕎ଶ(𝑌, 𝑍, 𝑋, 𝑉) +  

 𝐴(𝑉) ′𝕎ଶ(𝑌, 𝑍, 𝑈, 𝑋),               (7.6) 

where𝐴 is a non-zero 1-form, 𝜌 is a vector field by 𝑔(𝑋, 𝜌) = 𝐴(𝑋). 

Hence in view of (7.6), we get 

(𝐷௑𝕎ସ)(𝑌, 𝑉) = ෍(𝐷௑′𝕎ଶ)(𝑌, 𝑒௜ , 𝑒௜, 𝑉) =

௡

௜ୀଵ

෍{2

௡

௜ୀଵ

𝐴(𝑋)′𝕎ଶ(𝑌, 𝑒௜, 𝑒௜ , 𝑉) +  
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𝐴(𝑌)′𝕎ଶ(𝑋, 𝑒௜ , 𝑒௜, 𝑉) +  𝐴(𝑒௜)′𝕎ଶ(𝑌, 𝑋, 𝑒௜ , 𝑉)  

 + 𝐴(𝑒௜)′𝕎ଶ(𝑌, 𝑒௜, 𝑋, 𝑉) + 𝐴(𝑉) ′𝕎ଶ(𝑌, 𝑒௜, 𝑒௜, 𝑋),    

which gives  

(𝐷௑𝕎ସ)(𝑌, 𝑉) = 2𝐴(𝑋)𝕎ସ(𝑌, 𝑉) + 𝐴(𝑌)𝕎ସ(𝑋, 𝑉) 

+′𝕎ଶ(𝜌, 𝑋, 𝑈, 𝑉) + 𝐴(𝑉)𝕎ସ(𝑌, 𝑋).               (7.7)  

Putting  𝜌 for 𝑉 in (7.7), we get 

(𝐷௑𝕎ସ)(𝑌, 𝜌) = 2𝐴(𝑋)𝕎ସ(𝑌, 𝜌) + 𝐴(𝑌)𝕎ସ(𝑋, 𝜌) 

+′𝕎ଶ(𝜌, 𝑋, 𝑈, 𝜌) + 𝐴(𝜌)𝕎ସ(𝑌, 𝑋).                (7.8)  

From (7.7) and (7.8), we get 

(𝐷௑′𝕎ସ)(𝑌, 𝜌) = 𝐴(𝜌) ′𝕎ସ(𝑌, 𝑋).                 (7.9)  

Again from (7.5) and (7.9), we get 

𝕎ସ(𝑌, 𝑋).                  (7.10)  

Thus we have 

(1 − 𝜙)𝑅𝑖𝑐(𝑋, 𝑌) = 0.                (7.11) 

Therefore either 𝜙 = 1 or 𝑅𝑖𝑐(𝑋, 𝑌) = 0 . For 𝜙 = 1 , (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2)  reduces to pseudo 
𝑊ଶ − symmetric manifold, that is (𝑃𝑊ଶ𝑆)௡ . Also, for 𝑅𝑖𝑐(𝑋, 𝑌) = 0, (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2)  reduces to 
pseudo symmetric manifolds that is, (𝑃𝑆)௡, (𝑛 > 2). Therefore, we can state the following theorem: 

Theorem (7.1): In a (𝑃𝑁𝕎ଶ𝑆)௡, (𝑛 > 2), if the associated vector field 𝜌 is a unit parallel vector field, 
then either the manifold reduces to a pseudo symmetric manifold or pseudo 𝑊ଶ −symmetric manifold. 
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