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Abstract 
 

Yano (1952), studied on harmonic and killing vector fields. Lichnerowicz (1958) studied Geometric des 
groups de transformations. Tachibana (1959) studied and defined almost analytic vectors in almost 
Kaehlerian manifolds. Further, Goldberg (1960) studied conformal transformations of Kaehlerian 
manifolds. Rawat (2002) studied and defined Geometry of the locally product almost Tachibana space. 
Rawat and Silswal (2009) studied theory of Lie-derivatives and motions in Tachibana spaces. Rawat and 
Prasad (2009) studied on Lie- derivatives of scalars, vector and tensors. Rawat and Dobhal (2009) 
studied on bi- recurrent and bi- symmetric Kaehlerian manifolds. In the present paper, we have studied 
on Conformal Transformation in an almost Kaehlerian and Kaehlerian spaces; also several theorems 
have been established and proved within. 
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1. Introduction 
 
 Let    𝑋ଶ௡  be a  2𝑛- dimensional almost- complex space and  𝐹௝

௜  its almost- complex structure, then by 
definition, we have 
                                                  𝐹௝

௦𝐹௦
௜ = −𝛿௝

௜ ,                                                                                     (1.1)                

An almost- complex space with a positive definite Riemannian metric   𝑔௝௜   satisfying 
                               𝑔௥௦𝐹௝

௥𝐹௜
௦ = 𝑔௝௜                                                                                    (1.2) 

is called an almost- Hermitian space. From (1.2), it follows that   𝐹௝௜ ≡ 𝑔௥௜𝐹௝
௥   is skew- symmetric.  

 If an almost- Hermitian space satisfies  

        ∇௝𝐹௜௛ + ∇௜𝐹௛௝ + ∇௛𝐹௝௜ = 0 ,                                                            (1.3) 

where  ∇௝   denotes the operator of covariant derivative with respect to Riemannian connection, then it is 

called an almost- Kaehlerian space and if it satisfies 

                                                        ∇௝𝐹௜௛ + ∇௜𝐹௝௛ = 0 .                                                                       (1.4)        

then it is called a 𝐾- space. 

In an almost- Hermitian space, if   ∇௝𝐹௜௛ = 0 ,  then it is called a Kaehlerian space. 
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Consider Conformal killing vector  𝑣௛  in a   2𝑛- dimensional Kaehlerian space. Then the Lie- derivative 

of the fundamental tensor  𝑔௝௜  and that of Christoffel symbols   ቄ௛
௝௜

ቅ   with respect to   𝜈௛  are respectively 

given by 

                                         ℒ
௩

𝑔௝௜ = ∇௝𝑣௜ + ∇௜𝑣௝ = 2𝜙𝑔௝௜           (1.5) 

and 

                                ℒ
௩

ቄ௛
௝௜

ቅ = ∇௝∇௜𝑣௛ + 𝑅௞௝௜
௛ 𝑣௞ = 𝐴௝

௛𝜙௜ + 𝐴௜
௛𝜙௝ − 𝜙௛𝑔௝௜ ,      (1.6) 

where   𝑅௞௝௜
௛    is the curvature tensor,  𝐴௝

௛    the unit tensor and   𝜙௜ = ∇௜𝜙 ,  𝜙௛  being contravariant 

components. For a skew- symmetric tensor 𝜔௜೛௜೛ష1……….௜1 , we have in general Yano,(1957) 
 

ℒ
௩

∇௝𝜔௜೛……….௜భ
− ∇௝ℒ

௩
𝜔௜೛……….௜భ

= − ൬ℒ
௩

൜
𝑡

𝑗   𝑖௣
ൠ൰ 𝜔𝑡௜೛షభ……….௜భ

… … … . − ቀℒ
௩

ቄ
𝑡

𝑗    𝑖ଵ
ቅቁ 𝜔௜೛……….௜భ

𝑡             (1.7) 

Taking the skew- symmetric part with respect to   𝑗,  𝑖௣……….𝑖1,  we have 
 

                                              ℒ
௩

∇[௝ఠ೔೛……….௜1]= ∇[௝ℒ
ೡ

ఠ೔೛……….௜1] ,       (1.8) 

from which 
 

THEOREM (1.1)- The Lie- derivative of a closed skew- symmetric tensor is closed. 

 Transvecting (1.7)  with   𝑔௝௜೛    and taking account of (1.5) and (1.6), we get 
 

ℒ
௩

𝑔௝௜∇௝𝜔௜௜೛ష1……….௜1 + 2𝜙𝑔௝௜∇௝𝜔௜௜೛ష1……….௜1 − 𝑔௝௜∇௝ℒ
௩

𝜔௜௜೛ష1……….௜1 = (𝑛 − 2𝑝)𝜙௧𝜔௧௜೛ష1……….௜1,            (1.9)                              

from which 
 

THEOREM (1.2)- The Lie- derivative of a coclosed skew- symmetric tensor of order  𝑝  with respect 
to a Conformal killing vector is coclosed if and only if   𝑝 = 𝑛/2 , 𝑛 being even, or              

∇௧ ቀ𝜙𝜔௧೛ష1……….௜1ቁ = 0 , 

that is,  𝜙𝜔௜೛ష1……….௜1  is also coclosed, where  𝜙  is the function appearing in    ℒ
௩

 𝑔௝௜ = 2𝜙𝑔௝௜ . 

 

     Combining Theorem (1.1) and (1.2), we have 
  

THEOREM (1.3)- The Lie- derivative of a harmonic tensor   𝜔   of order   𝑝   in an 𝑛(= 2𝑚)-
dimensional   Kaehlerian space with respect to a Conformal killing vector is also harmonic if and only if   
𝑝 = 𝑛/2 , 𝑛   being even, or  𝜙𝜔  is coclosed. 
  
The most specific statement resulting is as follows. 
 

THEOREM (1.4)- The Lie- derivative of a harmonic tensor 𝜔 of order 𝑝 is an 𝑛(= 2𝑚)-dimensional 
compact orientable Kaehlerian space with respect to a Conformal killing vector is zero if and only if 
 𝑝 = 𝑛/2 , 𝑛being even, or 𝜙𝜔 is coclosed where 𝜙 is a function appearing in  ℒ

௩
𝑔௝௜ = 2𝜙𝑔௝௜ Goldbergm 

( 1960). 
 

2. In an almost complex space, a contravariant almost analytic vector is defined as a vector 𝑣௛  
which satisfies  

                                       ℒ
௩

𝐹௜
௛ = 𝑣௧𝜕௧𝐹௜

௛ − 𝐹௜
௧𝜕௧𝑣௛ + 𝐹௧

௛𝜕௜𝑣௧ = 0 ,      (2.1) 

In an almost Hermitian space, (2.1) may be written as  
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 ℒ
௩

𝐹௜
௛ = 𝑣௧∇௧𝐹௜

௛ − 𝐹௜
௧∇௧𝑣௛ + 𝐹௧

௛∇௜𝑣
௧ = 0 ,   (2.2) 

from which, by a straight forward calculation, we have 

                                                   ∇௜∇௜𝑣
௛ + 𝑅௜

௛𝑣௜ − 𝐹௜
௛ ቀℒ

௩
𝐹௜ቁ −

1

2
𝐹௝௜

௛ ቀℒ
௩

𝐹௝௜ቁ = 0 ,     (2.3) 

where  𝑅௜
௛  is the Ricci- tensor and     𝐹௜ = ∇௝𝐹௝

௜      and          𝐹௝௜௛ = ∇௝𝐹௜௛ + ∇௜𝐹௛௝ + ∇௛𝐹௝௜  . 

If we put   𝑆௝௜ = 𝑔௝௧(ℒ
௩

𝐹௧
௜) 

and suppose that the space is compact, we have  

    ∫ ቂቄ∇௜∇௜𝑣
௛ + 𝑅௜

௛𝑣௜ − 𝐹௜
௛ ቀℒ

௩
𝐹௜ቁ −

1

2
𝐹௝௜

௛(ℒ
௩

𝐹௝௜)ቅ 𝑣௛ +
1

2
𝑆௝௜𝑆௝௜ቃ 𝑑𝑣 = 0 ,            (2.4)                            

𝑑𝑣  being volume element of space. From (2.3) and (2.4), we have 
 

THEOREM (2.1)- A necessary and sufficient condition for a vector 𝑣௛ in a compact almost Hermitian 
space to be contravariant analytic  is (2.3) 

Suppose that a Conformal killing vector   𝑣௛   satisfies 

𝐹௜
௛ ቀℒ

௩
𝐹௜ቁ +

1

2
𝐹௝௜

௛ ቀℒ
௩

𝐹௝௜ቁ = 0 , 

Substituting  

                                                         ∇௜∇௜𝑣௛ + 𝑅௜
௛𝑣௜ = −

௡ିଶ

௡
∇௛൫∇௜𝑣

௜൯ 

obtained from (1.6) into (2.4), we find 

                                  ∫ [(𝑛 − 2)/𝑛 (∇_𝑖 𝑣^𝑖 )^2 + 1/2 𝑆^𝑗𝑖 𝑆_𝑗𝑖 ]  𝑑𝑣 = 0 ,                   (2.5) 

from which, for   𝑛 > 2 

                                                                    ∇_𝑖 𝑣^𝑖 = 0 ,  𝑆_𝑗𝑖 = 0      

and consequently  𝑣^ℎ  is a Killing vector  and at the same time a contravariant almost analytic vector, 
and for  𝑛 = 2 , we have   𝑆_𝑗𝑖 = 0 .  
Thus, we have 

THEOREM (2.2)- If a Conformal killing vector  𝑣^ℎ   in an  𝑛(= 2𝑚)-dimensional compact almost 
Hermitian space satisfies                                                

                                                           𝐹௜
௛ ቀℒ

௩
𝐹௜ቁ +

ଵ

ଶ
𝐹௝௜

௛ ቀℒ
௩

𝐹௝௜ቁ = 0 ,                                                   (2.6)  

     

then, for  𝑛 > 2 , it defines an automorphism of the space, that is, the infinitesimal transformation  𝑣^ℎ   
does not change both the metric and the almost complex structure of the space, and for  𝑛 = 2 , it is 
Contravariant almost analytic. 
      An almost Hermitian space in which  𝐹_𝑖 = 0  is satisfied is called an almost semi- Kaehlerian space. 
In such a space, we have 

                                             𝐹௝௜௛  𝐹௝௜ = 2𝐹௧  𝐹௛
௧ = 0 , 

      Thus, from Theorem (2.2), we have 

THEOREM (2.3)- If a Conformal killing vector  𝑣௛  in an  𝑛(> 2)  dimensional compact almost semi- 
Kaehlerian space satisfies 

𝐹௝௜௛ 〖ቀℒ 
௩

𝐹〗௝௜ቁ = 0      or,      ቀℒ 
௩

𝐹௝௜ ቁ 𝐹௝௜ = 0 , 
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then  𝑣^ℎ  defines an automorphism in the space. 
       
An almost Hermitian space in which  𝐹_𝑗𝑖ℎ = 0  is satisfied, then it is called an almost Kaehlerian space. 
In such a space, we have 

𝐹_ℎ = −1/2 𝐹_𝑗𝑖ℎ  𝐹^𝑗𝑖 𝐹_ℎ^𝑡 = 0 , 

that is, 𝐹_𝑗𝑖  is harmonic. Thus from Theorem (2.3), we have 

THEOREM (2.4)- A Conformal Killing vector  𝑣^ℎ  in an  𝑛(> 2)  dimensional Compact almost 
Kaehlerian space defines an automorphism of the space. 
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