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The object of the present paper is to introduce a type of non-flat Riemannian manifolds called generalized 
pseudo quasi-Einstein manifold and to study some geometric properties of such a manifold. It is shown 
that a generalized pseudo quasi-Einstein manifold can be expressed as a product manifold. Also the 
existence of such a manifold is ensured by a proper example. 
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1. Introduction 
Let  , , 3nM g n  , be a connected Riemannian or semi-Riemannian manifold. Let 

1
:   at  S

r
U x M S g x

n
    
 

. Then the manifold  ,nM g  is said to be a quasi-Einstein manifold 

(Chen et al., 1972, Deszes et al., 1998, Deszes et al., 2001, Deszes et al. , 2001, Deszes et al., 1996, 
Ferus, 1991,Gonzalez et al., 2001, Hicks,1969, Koufogiorgos et al.,2003, Koufogiorgos et al.,2003, 
Perrone,2004)  if on 1SU M , we have  

                     S g A A    ,                       (1.1) 

where A is an 1-form on 1SU  and α, β are some smooth functions on 1SU . It is clear that the function β 

and the 1-form A is non-zero at every point of 1SU . The scalars α, β are known as the associated scalars 

of the manifold. Also the 1-form A is called the associated 1-form of the manifold defined by 

   ,g X U A X
 
for any vector field X; U being a unit vector field called generator of the manifold. 

Such an n-dimensional quasi-Einstein manifold is denoted by nQE .  

      Generalizing the notion of quasi-Einstein manifold, recently the first author (Shaikh, 2009) introduced 
the notion of pseudo quasi-Einstein manifold and studied its geometric properties with the existence of 

such notion by several non-trivial examples. Let  , , 3nM g n  , be a semi-Riemannian manifold. Let 

 2
:  at SU x M S g A A x      . Then the manifold  ,nM g  is said to be a pseudo quasi-

Einstein manifold (Watenabe 1968) if on 2SU M , we have 

                      S g A A D      ,                                                                         (1.2) 
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where A is an 1-form on 
2SU  such that    ., .g U A  and α, β, γ are some smooth functions on 

2SU

and D is a trace free symmetric tensor of type (0, 2) such that D(X, U) = 0 for any vector field X. Such an 

n-dimensional manifold is denoted by nPQE . It follows that every nQE  is a nPQE , but not conversely 

as follows by various examples given in (Watanabe, 1968).  
It is known that the outer product of two covariant vectors is a tensor of type (0, 2) but the converse is not 
true, in general (De et al., 1981). Consequently, the tensor D can not be decomposed into product of two 

1-forms. In particular, if D = B ⊗ B, B being a non-zero 1-form, then a nPQE
 reduces to generalized 

quasi-Einstein manifold by De and Ghosh (Desezez et al., 2001). Again, if D A B B A    , then a 

nPQE  turns into a generalized quasi-Einstein manifold by Chaki . The object of the present paper is to 

generalize the notion of nPQE  and is said to be generalized pseudo quasi-Einstein manifold. Let

 , , 3nM g n  , be a Riemannian or semi-Riemannian manifold. Let

 :  a t SU x M S g A A D x        . Then the manifold  ,nM g  is said to be a generalized pseudo 

quasi-Einstein manifold if on SU M , we have  

                     S g A A D E        ,                                                            (1.3) 

where A is an 1-form on SU  and α, β, γ, δ are some smooth functions on SU  and D, E are two trace free 

symmetric tensors of type (0, 2) such that D(X, U) = 0, E(X, U) = 0 for any vector field X. Such an n-

dimensional manifold will be denoted by nGPQE . It follows that every nQE  as well as nPQE  is a 

nGPQE  but not conversely as shown by the example in section 5. We note that if D = B ⊗ B, B being a 

non-zero 1-form, then a nGPQE  turns into a pseudo generalized quasi-Einstein manifold by Shaikh and 

Jana. Also, if D A B B A     and E = A⊗C +C ⊗A, C being a non-zero 1-form, then a nGPQE  

turns into a hyper generalized quasi-Einstein manifold.  

The paper is organized as follows. Section 2 deals with some geometric properties of nGPQE . Section 3 

is concerned with conformally flat nGPQE  and obtained various interesting geometric properties of such 

a manifold. It is shown that a nGPQE  with certain condition is a product manifold. Section 4 is devoted 

to the study of global properties of nGPQE  and it is shown that in such a manifold under certain 

conditions there exists no non-zero Killing, projective Killing and conformal Killing vector fields. Also 
the harmonic vector field in such a manifold reduces to a parallel vector field. The last section deals with 

an example of nGPQE  which is neither nQE  nor nPQE . 

 

2. Some geometric properties of GPQEn 
 

From (1.3) it follows that  
                                            r = nα + β,                         (2.1) 
where r is the scalar curvature of the manifold, 
                                   S(X, U) = (α + β) A(X),                          (2.2) 
                                        S(U, U) = α + β.                         (2.3) 
We now prove the following: 

Theorem 2.1-  Let  , , 2nM g n  , be a connected orientable Riemannian manifold which is either 

non-compact or compact with vanishing Euler number. If the Ricci tensor S of type   (0, 2) of a 
Riemannian manifold is of rank > 1 which satisfies the relation 
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               1, , , , , , , ,S Y Z S X W S X Z S Y W p g Y Z g X W g X Z g Y W    
                 (2.4) 

         2 3, , , ,p g L X W g Y Z p g T X W g Y Z  , 

where 1 2 3, ,p p p  are non-zero scalars and L, T are the symmetric endomorphisms, with vanishing trace, 

of the tangent space at any point of the manifold corresponding to the tensors of type (0, 2) such that LX 
and TX are orthogonal to a unit vector field U, then the manifold is a generalized pseudo quasi-Einstein 
manifold. 
 
Proof: To prove the theorem we first state a well-known result (Shaikh et al., 2006) as follows: 
 

Proposition 2.1.  For a connected orientable manifold nM  the following assertions are equivalent: 

There is a nowhere vanishing vector field V on nM .  

Either nM  is non-compact, or nM  is compact and has Euler number   0nM  . 

From the Proposition 2.1, it follows that there is a nowhere vanishing vector field U on the manifold 

 ,nM g  under consideration such that g(X, U) = A(X) for any vector field X. We also assume that g(U, 

U) = 1. Then setting Y = Z = U in (2.4), we get 

                   1, , , , , , , ,S U U S X W S X U S W U p g U U g X W g X U g W U      

                  2 3, , , ,p g L X W g U U p g T X W g U U  , 

which can be written as 

                   1 1, ,a S X W A Q X A Q W p g X W p A X A W                                               (2.5) 

                   
   2 3, ,p g LX W p g TX W  ,    

where a = S(U, U) and A(QX) = g(QX, U) = S(X, U). Since U is a unit vector field and the Ricci tensor is 
nowhere vanishing, we have a ≠ 0. From (2.5) it follows that 

                          1 2, ,S X W g X W A X A W                                                                 (2.6) 

                                3 4 5, ,F X F W D X W E X W     , 

where 31 1 2
1 2 3 4 5

1
, , , ,

pp p p

a a a a a
          ;     ,F X A QX   ,D X W  

 ,g LX W  and E(X, W) = g(TX, W) for all vector fields X and W. Since LX and TX are orthogonal to 

U, we have D(X, U) = 0 and E(X, U) = 0 for all X. Since U is nowhere vanishing, 0S  , 1 2,p p  and 3p  

are non-zero scalars, it follows that 1 2 3 4 5, , , ,      are non-zero scalars. 

Again putting Y = U in (2.4) we obtain 
                1, , , , , , , ,S U Z S X W S X Z S U W p g U Z g X W g X Z g U W      

              2 3, , , ,p g L X W g U Z p g T X W g U Z  ,  

which implies 

                     1, , , ,F Z S X W S X Z F W p A Z g X W g X Z A W      

            2 3, ,p g LX W A Z p g TX W A Z  ,  

which yields by virtue of (2.6) that 
                   1 2, ,F Z g X W F W g X Z A X F Z A W A X A Z F W                       

(2.7) 

               4 5, , , ,F Z g L X W F W g L X Z F Z g T X W F W g T X Z            

               1 2 3, , , ,p A Z g X W g X Z A W p g L X W A Z p g T X W A Z     
.  

Setting X = W = U in (2.7), we obtain  

                                 
   F Z a A Z for all Z.                                              (2.8) 

Using (2.8) in (2.6) we obtain 
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                        , , , ,S X W g X W A X A W D X W E X W       ,  

where 2
1 2 3 4, ,a           and 5  . Thus the manifold under consideration is a 

nG P Q E .  
 

Proposition 2.2- In a Ricci semi-symmetric ,nGPQE  n > 2, the relation A (R(X, Y )LZ) + δA(R(X, 

Y )TZ) = βA(R(X, Y )Z) holds for all X, Y. 
 
Proof. We consider a nGPQE  which is Ricci semi-symmetric. Now we have 

         , . , , , , ,R X Y S Z W S R X Y Z W S R X Y W Z    

               , , , ,g R X Y Z W g R X Y W Z       
                      , ,A R X Y Z A W A R X Y W A Z    

 

                  , , , ,D R X Y Z W D R X Y W Z    
 

                  , , , ,E R X Y Z W E R X Y W Z      

                   , ,A R X Y Z A W A R X Y W A Z       
                  , , , ,D R X Y Z W D R X Y W Z    

 

                  , , , ,E R X Y Z W E R X Y W Z    
. 

The above relation implies by virtue of R(X, Y).S = 0, that 
                        , ,A R X Y Z A W A R X Y W A Z                              (2.9) 

                  , , , ,D R X Y Z W D R X Y W Z      

                  , , , , 0E R X Y Z W E R X Y W Z     
. 

Setting  W = U in (2.9) we get 

              , , ,   for all , ,A R X Y LZ A R X Y TZ A R X Y Z X Y Z    .                            (2.10) 

This proves the result.  
 

Theorem 2.2-A Ricci semi-symmetric nGPQE  satisfying the relation 

                               R(X, Y )U = A(Y )X − A(X)Y                                  (2.11) 
for all X, Y is an Einstein manifold. 
Proof.  From (2.11) we get 
                                 S(Y, U) = (n − 1) g (Y, U). 
Also from (1.2) we have 
                                S(Y, U) = (α + β) g (Y, U). 
Comparing the last two relations we obtain  
                      α + β = n − 1 (as A is a non-zero 1-form).  
By virtue of (2.11), the relation (2.10) can be written as 

               , , , ,A Y D X Z A X D Y Z A Y E X Z A X E Y Z                                         (2.12) 

       , ,A Y g X Z A X g Y Z    .    

Setting Y = U in (2.12) and noting that D(X, U) = E(X, U) = 0 for all X, we get 
                  γD(X, Z) + δE(X, Z) = β[g(X, Z) − A(X) A(Z)], 
which yields, on contraction, β = 0 (since Tr.D = Tr.E = 0).  
Hence α = n − 1 and γD(X, Z) + δE(X, Z) = 0 for all X, Z. Consequently, (1.3) takes the form 
                     S(X, Y) = (n − 1)g(X, Y) for all X, Y 
and hence the manifold under consideration is Einstein. This proves the theorem. 
 

3. Conformally flat GPQEn 
 

The Kulkarni-Nomizu product E ∧ F of two (0, 2) tensors E and F is defined by 
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       (E ∧ F)(X1, X2, X3, X4) = E(X1, X4) F(X2, X3) + E(X2, X3) F(X1, X4) 
                    − E(X1, X3) F(X2, X4) − E(X2, X4) F(X1, X3), 

for all vector fields Xi, i = 1, 2, 3, 4. Let  1

2
G g g  . 

Definition 3.1. A Riemannian manifold  ,nM g , n > 3, is said to be of pseudo quasi-constant curvature 

if it is conformally flat and its curvature tensor R of type (0, 4) satisfies the condition (Deszez et al., 1999) 

                                   1 2 3R a G a g V a g D     , 

where 1 2 3, ,a a a  are non-zero scalars, D is a symmetric tensor of type (0, 2) and V = A ⊗ A.  

 In particular, if 3a  = 0, the manifold reduces to the notion of a manifold of quasi-constant curvature 

introduced by Chen and Yano (Deszez et al., 1999); and if 2 3 0a a  , then the manifold turns into a 

manifold of constant curvature.  
 

Generalizing this notion of pseudo quasi-constant curvature we define the notion of a manifold of 
generalized pseudo quasi-constant curvature. 
 

Definition 3.2- A Riemannian manifold  ,nM g , n > 3, is said to be of generalized pseudo quasi-

constant curvature if it is conformally flat and its curvature tensor R of type    (0, 4) satisfies the condition 

                     1 2 3 4R a G a g V a g D a g E       ,                                                           (3.1) 

where 1 2 3 4, , ,a a a a  are non-zero scalars and D, E are symmetric tensors of type (0, 2).  

        Especially, if 4 0a  , then the notion reduces to the manifold of pseudo quasi-constant curvature.  

We now prove the following theorem. 
 

Theorem 3.1- A conformally flat nGPQE , n > 3, is a manifold of generalized pseudo quasi-constant 

curvature. 
Proof. If a nGPQE , n > 3, is conformally flat, then its curvature tensor R of type (0, 4) takes the 

following form  

                      
1

2 1 2

r
R g S G

n n n
  

  
.                                               (3.2) 

Using (1.3) and (2.1) in (3.2) we obtain 

             
  

2

1 2 2 2 2

n
R G g V g D g E

n n n n n

     
      

    
 .                   (3.3) 

Now the relation (3.3) can be written as 

                  1 2 3 4R b G b g V b g D b g E       ,                                               (3.4) 

where  
  1 2 3

2
, ,

1 2 2 2

n
b b b

n n n n

    
  

   
 and 

4 2
b

n





 are non-zero scalars. Comparing 

(3.1) and (3.4), it follows that the manifold is of generalized pseudo quasi-constant curvature.  

Corollary 3.1- A 3GPQE  is a manifold of pseudo quasi-constant curvature.  

Corollary 3.2- A manifold  ,nM g , n > 2, of generalized pseudo quasi-constant curvature is a 

nGPQE . 
Proof.  If the manifold is of generalized pseudo quasi-constant curvature, then we have (3.1), 
which yields on contraction over X and W that 
                              , , , ,S Y Z g Y Z A Y A Z D Y Z E Y Z        
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for all Y , Z, where      1 2 2 31 , 2 , 2n a a n a n a          and   42n a     are non-

zero scalars. Hence the result. 

Lemma 3.1- In a conformally flat nG P Q E , n > 3, the curvature tensor R of type (1, 3) satisfies the 

following: 
    

        2
, , , ,

1 2 2

n
R X Y Z g Y Z X g X Z Y D Y Z X

n n n

   
        

                  (3.5) 

                  , , , ,
2

D X Z Y g Y Z L X g X Z L Y E Y Z X
n


     

 

                , , ,E X Z Y g Y Z T X g X Z T Y   
,  

 
   

    2
, ,

1 2

n
R X U Z g X Z U

n n

  
 

 

                                                                             (3.6) 

              , ,
2 2

D X Z U E X Z U
n n

 
 

 
 

and    
,

1 2 2
R X U U X L X T X

n n n

   
  

  
                   (3.7) 

for all X, Y, Z U , the (n − 1)-dimensional distribution orthogonal to the generator U. 
 

Proof. In a conformally flat nGPQE  we have the relation (3.3). Since U
 is the (n − 1)-dimensional 

distribution orthogonal to the generator U we have g(X, U) = 0 if and only if X U  . Hence (3.3) yields 

the relations (3.5)-(3.7) for all X, Y, Z U  . This proves the theorem. 

Theorem 3.2-If a conformally flat nGPQE , n > 3, is homogenous with respect to the structure tensors D, 

E in the direction of X as well as Y, then the sectional curvature of all planes determined by X, Y U  is 
    

  
2 2 1

1 2

n n c d

n n

       
 

, δ being a scalar. 

Proof.  Let 1  be the sectional curvature of the plane determined by X and Y, where X, Y U . If the 

manifold is homogenous with respect to the structure tensors D, E in the direction of X, Y, then we have 
D(X, X) = cg(X, X), D(X, Y) = cg(X, Y), and D(Y, Y) = cg(Y, Y), c being a scalar. 

E(X, X) = dg(X, X), E(X, Y) = dg(X, Y), and E(Y, Y) = dg(Y, Y), d being a scalar. 
Thus by virtue of (3.5) we obtain 

                                
      

1 2

, ,

, , ,

g R X Y Y X

g X X g Y Y g X Y
 


 

                                       
  

2 2 1

1 2

n n c d

n n

       


 
.  

This proves the theorem. 

We note that 1  = 0 (resp. constant, non-constant) according as      2 2 1 0n n c d          

(resp.     2 2 1n n c d        = constant,      2 2 1n n c d          constant). 

This leads to the following: 
 

Corollary 3.3- If a conformally flat nGPQE , n > 3, is homogenous with respect to the structure  tensor 

D, E in the direction of X as well as Y , the sectional curvature of all planes determined by X and Y is 
zero (resp. constant) if and only if     2 2 1 0n c d n         (resp. constant). 
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Theorem 3.3- If a conformally flat nG P Q E , n > 3, is homogenous with respect to the structure tensors 

D, E in the direction of X, the sectional curvature of all planes determined by X and U is 

       
  

2 2 1

1 2

n n c d n

n n

        
 

, c, d being scalars, for all X U . 

Proof. Let 2  be the sectional curvature of the plane determined by X and U, where X U  . 

If the manifold is homogenous with respect to the structure tensor D in the direction of X, then we have  
                D(X, X) = cg(X, X), E(X, X) = dg(X, X) c, d being scalars. 

Thus by virtue of (3.7) we obtain 

                    

  
      

2 2

, ,

, , ,

g R X U U X

g X X g U U g X U
 


 

                                
  

2 2 1

1 2

n n c d n

n n

        


 
. 

This proves the theorem.

          We note that 2  = 0 (resp. constant, non-constant) according as 

     2 1 0n c d n          (resp.       2 1n c d n         constant, 

      2 1n c d n         constant). This leads to the following: 
 

Corollary 3.4- If a conformally flat nGPQE , n > 3, is homogenous with respect to the structure tensors 

D, E in the direction of X, the sectional curvature of all planes determined by X and U is zero (resp. 

constant) if and only if      2 1 0n c d n          (resp. constant).  
 

Definition 3.3- A Riemannian manifold  ,nM g , n > 3, is said to be conformally con-servative if the 

divergence of the conformal curvature tensor vanishes (Schouten, 1934) 
 
       From the definition of conformal curvature tensor C, it can be easily seen that 

                 3 1
, , , , ,

2 2 1X Z
n

d iv C X Y Z S Y Z S Y X d r X g Y Z dr Z g Y X
n n

 
          

             (3.8) 

Then we prove the following: 
Theorem 3.4-  If in a nGPQE , n > 3, the associated scalars are constants, the structure tensors are of 

Codazzi type and the generator U is a recurrent vector field with the associated 1-form A not being the 1-
form of recurrence, then the manifold is conformally conservative.  
Proof. If the associated scalars α, β, γ and δ are constants, then (2.1) yields that the scalar curvature is 
constant and hence dr(X) = 0 for all X. Consequently (3.8) takes the form 

          
       3

, , ,
2 X Z

n
div C X Y Z S Y Z S Y X

n


     

.                              (3.9) 

From (1.3) it follows that 

                   , ,X X XS Y Z d X g Y Z A Y A Z A Z A Y                             
(3.10) 

               , ,Xd X A Y A Z d X D Y Z D Y Z       

          , ,Xd X E Y Z E Y Z    . 

Since α, β, γ and δ are constants, (3.10) reduces to 

                    , , ,X X X X XS Y Z A Y A Z A Z A Y D Y Z E Y Z                             (3.11) 

We now assume that the structure tensors D, E of nGPQE are of Coddazi type (Neill, 2003). Then for 

all vector fields X, Y, Z, we have 

                , , ; , ,X Z X ZD Y Z D Y X E Y Z E Y X      .                              (3.12) 
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In view of (3.11), (3.9) can be written as 

           3
,

2 X X
n

d iv C X Y Z A Y A Z A Z A Y
n

    
                              (3.13) 

            Z ZA Y A X A X A Y             , ,X ZD Y Z D Y X       

          , ,X ZE Y Z E Y X        .  

By virtue of (3.12), (3.13) takes the form 

          
           3

,
2 X X

n
d iv C X Y Z A Y A Z A Z A Y

n
    

                  (3.14) 

                      Z ZA Y A X A X A Y       . 

Next, if the generator U of the manifold under consideration is a recurrent vector field (Tanno, 1988), 

then we have  XU X U  , where π is called the 1-form of recurrence such that π is different from 

A. Consequently we get 

           , ,   a n d  h e n c e  X Xg U Y g X U Y A Y X A Y     .                 (3.15) 

In view of (3.15), (3.14) reduces to 

             2
,

3

n
div C X Y Z X A Y A Z X A Z A Y

n
  

 
                   3.16) 

           Z A Y A X Z A X A Y    . 

Also since g(U, U) = 1, it follows that     , 0X XA U g U U     and hence (3.15) yields 

π(X) = 0 for all X. Therefore from (3.16), we have div C(X, Y)Z = 0. This proves the theorem. 

Theorem 3.5-  If in a nGPQE , n > 3, the associated scalars are non-constants but their sum vanishes, 

the structure tensor is of Codazzi type and the generator U satisfy the conditions (3.20) and (3.21), then 
the manifold is conformally conservative.  
Proof.  If the associated scalars of nGPQE  are not constants and α + β + γ + δ = 0, then (3.10) 

yields 

            , , , ,X XS Y Z d X g Y Z E Y Z E Y Z           
                  (3.17) 

        ,d X A Y A Z E Y Z     

          X XA Y A Z A Z A Y     
 

         , , ,Xd X D Y Z E Y Z D Y Z       . 

From (2.1) we have 
                                 dr(X) = ndα(X) + dβ(X).                                              (3.18) 

Using (3.17) and (3.18) in (3.8) we obtain by virtue of (3.12) that 

           2 2
, , ,

3 2 1

n n
d i v C X Y Z d X g Y Z d Z g X Y

n n
  

    
                  (3.19) 

       , ,d X E Y Z d Z E X Y              1
, ,

2 1
d X g Y Z d Z g X Y

n
    

 

       ,d X A Y A Z E Y Z           ,d Z A Y A X E Y X   
 

       , ,d X D Y Z d Z D Y X            , ,d X E Y Z d Z E Y X    
 

           X XA Y A Z A Z A Y              Z ZA Y A X A X A Y     . 

We now assume the following conditions 

                       

1 1 1

2 2 2
U g r a d g r a d g r a d  

  
   ,                             (3.20) 

               
   2

2 2
1X

n
U X L X T X

n

 
    

 
     


               (3.21) 

for all X. Then (3.20) implies that 
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     1 1 1

, , ,
2 2 2

g X U g X g r a d g X g r a d d X  
  

    
 

, i.e., 

                              dα(X) = 2αg(X, U) = 2αA(X).                                   (3.22) 
Similarly we have 

             dβ(X) = 2βg(X, U) = 2βA(X) and dγ(X) = 2βg(X, U) = 2γA(X).                               (3.23) 
Again from (3.21) it follows that 

                      2
, 2 , 2 ,

1X
n

A Y g X Y D X Y E X Y
n

 
    

 
     


.                        (3.24)  

In view of (3.22)-(3.23), the relation (3.19) reduces to div C(X, Y)Z = 0. This proves the theorem. 
Now the geometric significance of the condition (3.21) is determined by the following: 
 

Theorem 3.6-  A 
nG P Q E , n > 3, satisfying the condition (3.21) is a product manifold. 

Proof. For any X, Y U  ,    , 0X g Y U   implies that 

                                 , ,X Xg Y U g U Y     , 

which yields by virtue of (3.21) that 

                           2
, , 2 ,

1X
n

g Y U g X Y D X Y
n

 
 

 
   


 

                            2 , ,YE X Y g X U        . 

Hence 
                   , , ,   i .e .,   , 0X Y X Yg Y U g X U g Y X U        

for all X, Y U  . Consequently g([X, Y], U) = 0. Thus [X, Y] is orthogonal to U and hence 

 ,X Y U  . Therefore the distribution U   is involutive. Hence from Frobenius theorem 

[2] it follows that U  , the (n − 1)-dimensional distribution orthogonal to U, is integrable. 
Consequently nG P Q E  is a product manifold. This completes the proof. 
 

4. Some global properties of nGPQE  
 

 This section is concerned with a compact, orientable nG PQ E , n > 2, without boundary with vanishing 

Euler number, and also with α, β, γ, δ as associated scalars, U as the generator and D, E as the structure 
tensors. Then we prove the following: 

Theorem 4.1- If in a compact, orientable 
nG P Q E , n > 2, without boundary and with vanishing Euler 

number, the associated scalars and the structure tensor are such that β  >  0, α + β < 0 and γD(X, X) + 
δE(X, X) < 0 for any X, then there exists no non-zero Killing vector field in this manifold. 
Proof. It is known that [34] for any vector field X in a Riemannian manifold M, the following 
relation holds  

                             
   2 2, 0

M
S X X X d i v X d v       ,                             (4.1) 

where dv denotes the volume element of M. If X is a Killing vector field, then div X = 0. Hence (4.1) takes 
the following form 

                                      
  2, 0

M
S X X X d v      .                                           (4.2)  

Let θ be the angle between the generator U and any vector X of nGPQE . Then

 
 

,
c o s 1

,

g X U

g X X
  

.   Therefore    , ,g X U g X X , and consequently from (1.3) it follows that 

                  2, , ,   fo r  0S X X X D X X E X X         .                  (4.3) 



Journal of Progressive science, vol.2, no.2, 2011 
 

156 

Let us consider α + β < 0 and γD(X, X) + δE(X, X) < 0. Hence by virtue of (4.3) we have 
                 

2 2, ,
M P Q E n

X D X X E X X X d v   


         

                                      2,
M

S X X X d v      ,  

which yields by virtue of (4.2) that 

              
     2 2, , 0

M
X D X X E X X X d v            . 

If α + β < 0 and γD(X, X) + δE(X, X) < 0, then the last relation reduces to 

                   
     2 2, , 0

M
X D X X E X X X d v            . 

Hence X = 0. This proves the theorem. 
 
Definition 4.1- A vector field X in a Riemannian manifold  ,nM g , n > 2, is said to be 

projective Killing vector field if it satisfies 
                                         ,X Y Z Y Z Z Y   £  

for any vector fields Y and Z, ω being a certain 1-form and £ is the operator of Lie differen- 
tiation. 
 
Theorem 4.2- If in a compact, orientable nG P Q E , n > 2, without boundary and with vanishing Euler 

number, the associated scalars and the structure tensors are such that β > 0, α + β ≤ 0 and γD(X, X) + 
δE(X, X) ≤ 0 for any X, then a projective Killing vector field has vanishing covariant derivative; and if      
β > 0, α + β < 0 and γD(X, X) + δE(X, X) < 0 for any X, then there exists no non-zero projective Killing 
vector field in this manifold. 
 
Proof. We know that for any vector field X in a Riemannian manifold M, the following 
relation holds  

                            
     2 21 1

, 0
4 2 1M

n
S X X d d iv X d v

n


 
    


,                                (4.4) 

where ξ is an 1-form corresponding to the vector field X. We now assume the conditions        β > 0, α + β 
≤ 0 and γD(X, X) + δE(X, X) ≤ 0 for any X. Therefore (4.3) yields S(X, X) ≤ 0 and 
hence from (4.4) we obtain dξ = 0 and div X = 0. This implies that X is harmonic as well as a Killing 
vector field. Consequently its covariant derivative vanishes. This proves the theorem. 

Definition 4.2. A vector field X in a Riemannian manifold  ,nM g , n > 2, is said to be conformal 

Killing vector field if it satisfies  

                                                        2X g g£  

for any vector field X, where ρ is given by  1
d iv X

n
    and £ is the operator of Lie differentiation. 

Theorem 4.3. If in a compact, orientable nG P Q E , n > 2, without boundary and with vanishing Euler 

number, the associated scalars and the structure tensors are such that β > 0, α + β < 0 and γD(X, X) + 
δE(X, X) < 0 for any X, then there exists no non-zero conformal Killing vector field in this manifold. 
Proof. It is known that for any vector field X in a Riemannian manifold M, the following 
relation holds 

                       
   2 22

, 0
M

n
S X X X d iv X d v

n

       ,                                 (4.5) 

where dv denotes the volume element of M. Now we assume the conditions β > 0, α + β < 0 and γD(X, X) 
+ δE(X, X) < 0 for any X. Then proceeding similarly as before we obtain 

                                              ∇X = 0, div X = 0. 
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This proves the theorem. 
 
Theorem 4.4. If in a compact, orientable nGPQE , n > 2, without boundary and with vanishing Euler 

number, the associated scalars and the structure tensors are such that β > 0, 

   2 , , 0X D X X E X X      for any X, then any harmonic vector field is orthogonal to the 

generator U and also it is a parallel vector field. 
Proof. It is known that for any vector field X in a Riemannian manifold M, the following relation holds  

                                     
  2

, 0
M

S X X X d v      ,                                              (4.6) 

where dv denotes the volume element of M. Now we assume the conditions β > 0, 

   2 , , 0X D X X E X X     . Then by virtue of (1.3) we obtain     2
, ,S X X g X U and 

hence (4.6) reduces to  

                                     
  2 2, 0

M
g X U X dv      , 

which implies that 
                                         g(X, U) = 0, and ∇X = 0. 

Hence the theorem follows. 

5. A proper Example of nGPQE  

This section deals with a proper example of nGPQE . 

Example 5.1- A (2m+1)-dimensional smooth manifold M is said to have a contact structure and is called 
a contact manifold if it carries a global 1-form η such that  

                                                  0md    

everywhere on M, where the exponent denotes the m-th exterior power. We call η a contact form on M. A 
Riemannian metric g is said to be an associated metric if there exists a (1, 1) tensor field  , and a vector 

field ξ such that 

                                       , , , 1d X Y g X Y     , 

                                             2 X X X      

for all vector fields X, Y . A contact structure with an associated metric is called a contact metric structure 
and the contact manifold equipped with a contact metric structure is called a contact metric manifold. 

Given a contact metric manifold, we define a (1, 1) tensor field h by 
1

2
h  £ , where £ denotes the Lie 

differentiation. Then h is symmetric and satisfies  h h   , . . 0Tr h Tr h  . 

In 1998, S. Tanno introduced the notion of k-nullity distribution of a Riemannian manifold as a 
distribution 
                       : , , ,p pp N k Z T M R X Y Z k g Y Z X g X Z Y      

 

for any X, pY T M . 

A contact metric manifold with ξ belonging to N(k) satisfies the relation 
                                      R(X, Y)ξ = k[η(Y)X − η(X)Y] 

for all X, Y. In particular, if k = 1 then the manifold is Sasakian. Generalizing this notion of k-nullity 
distribution (Blair, et al., 1995) introduced the notion of (k, µ)-nullity distribution of a contact metric 
manifold as a distribution 

                         , : , , ,p pp N k Z T M R X Y Z k g Y Z X g X Z Y       
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                       , ,g Y Z h X g X Z h Y   
 

for any X, pY T M , k, µ are real constants. A contact metric manifold with ξ ∈ N(k, µ) is called a (k, µ)-

contact metric manifold. If we assume k, µ as smooth functions then a (k, µ)-contact metric manifold is 
said to be generalized (k, µ)-contact metric manifold (Spivak, 1970). However, such a manifold exists 
only for dimension three (Shaikh et. al., 2006 and Yano, 1970).  
A (2m + 1)-dimensional contact metric manifold M (η, ξ, φ, g) whose characteristic vector field ξ is a 
harmonic vector field is called an H-contact metric manifold. D. Perrone (Spivak, 1970) proved that M(η, 
ξ, φ, g) is an H-contact metric manifold if and only if ξ is an eigenvector of the Ricci operator, which 
generalizes the results of González-Dávila and Vanhecke (Perrone, 201) for m = 1. It is important to 
mention that the class of H-contact metric manifolds includes several interesting classes of contact metric 
manifolds such as Sasakian and η-Einstein manifolds, K-contact manifolds, strongly φ-symmetric spaces, 
(k, µ)-contact metric manifolds, and generalized (k, µ)-contact metric manifolds. Perrone (Spain, 19995) 
also gave a geometric interpretation of generalized (k, µ) in terms of harmonic maps. 
Again in (Shaikh, et al., 2009) Koufogiorgos et al., 2008  introduced the notion of (k, µ, ν)-contact metric 
manifold, defined as follows: 
A (2m + 1)-dimensional contact metric manifold M(η, ξ, φ, g) is said to be a (k, µ, ν)-contact 
metric manifold if its curvature tensor satisfies  

    R(X, Y)ξ = k[η(Y)X − η(X)Y] + µ[η(Y)hX − η(X)hY] + ν[η(Y)φhX − η(X)φhY] 

for all X, pY T M , where k, µ, ν are smooth functions on M. Then Koufogiorgos et. al., 2008 and 

Shaiks et al., 2009 proved that if a 3-dimensional contact metric manifold M(η, ξ, φ, g) is a (k, µ, ν)-
contact metric manifold, then M is an H-contact metric manifold and conversely; if M is a 3-dimensional 
H-contact metric manifold, then M is a (k, µ, ν)-contact metric manifold on an everywhere open and 
dense subset of M. They also proved that such a manifold exists only for dimension 
3. Then Koufogiorgs et. al., 2008 and Shaiks et al., 2009 obtained the Ricci tensor of a (k, µ, ν)-contact 
metric manifold as follows: 

                   S(Y, Z) = αg(Y, Z) + βη(Y) η(Z) + γD(Y, Z) + δE(Y, Z), 

where    , 3 , , , , ,
2 2

r r
k k v D Y Z g h Y Z            and E(Y, Z) = g(φhY, Z) are 

symmetric tensor of type (0, 2) such that Tr.D = Tr.E = 0. Also since in a contact metric manifold hξ = φξ 
= 0, it follows that D(X, ξ) = 0 = E(X, ξ). Hence if we take U = ξ, then a   (k, µ, ν)-contact metric manifold 

is a 3GPQE  which is neither 3PQE  nor 3QE . Thus we can state the following: 

Theorem 5.1- A 3-dimensional (k, µ, ν)-contact metric manifold is a generalized pseudo quasi-Einstein 
manifold, which is neither quasi-Einstein nor pseudo-quasi-Einstein. 
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