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Abstract 
 

In this paper, an attempt has been made to clarify the geometrical meaning of bitopolization of sets as 
directed by the originator of this topic (J.C.Kelly). As far as we are concern, none of the researchers in the 
field of bitopological spaces could have touched this standpoint and, therefore, whatever the aspects have 
been exposed in this paper is quite new. Further, on the basis of geometrical concept, twinned pairwise 
open sets and pairwise open sets have expressed intuitively. Also, the diagrammatic representation of 
pairwise open sets have been depicted which elucidates the geometrical concept of pairwise open sets. 
 

Key words- Geometrical meaning of bitopological spaces, development of pairwise open sets of a metric 
space to a bitopological spaces.  

1.01 Introduction 

For a long time, in the history of topology, it has been matter confusion that how the concept of open-ness 
and close-ness of a set of a metric space can be globalized so that every metric space could be seen in that 
broad sense but the converse is not always true. Of course, the sense of open-ness and close-ness of a set 
associated with a distance function is not an abstract property, on the contrary, it is quite geometrical, 
where the nature of a distance function, as here in this case appears, is not merely perceived like the 
concept of distances used in Euclidian geometry and therefore sometimes this is why, it is said that a 
topology is nothing but it is an extension of geometry. The two major properties of open sets as well as 
closed sets of a metric space are given in the following version: 
 

(a) Arbitrary union of open sets is open; 
(b) Finite intersection of open sets is open; 
(c) Arbitrary intersection of closed sets is closed; 
(d) Finite union of closed sets is closed. 

 

Having observed geometrically, the outer out look of an open set of a metric space (that is, the part of a 
closed set leaving its boundary) one can depict in one’s mind that arbitrary collection of open sets can 
always be viewed as an open set while the arbitrary intersection of open sets can not be open in accordance 
with our opinion that a singleton set is not an open set. More explicitly, if one considers a closed region of 
Euclidian space and views through the region having emanating an internal point of it, then the region can 
be seen clearly like an open set. A singleton set is a closed set in the sense that the point inside the set is 
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itself the limit point of the set. To globalize the concept of open-ness of a set, the first two or the last two 
of the above four properties of open sets as well as closed sets, associating an empty set and the whole set 
as open sets, a collection T of subsets of a non-empty set X is constructed which is then called a topology 
of the set X and the pair (X, T  ) is called a topological space. Therefore obviously it can be said that the 
chief aim to define a topology is to distinguish the open sets and closed sets among subsets of X. The there 
postulates namely 
 

1. The empty set  and the whole set X belongs to T; 
2. The arbitrary collection of members of T belongs to T; and 
3. The finite intersection of members of T  belongs to T  ; given against to define a topology on a non-
empty set X does not assure us that each topological space can be a metric space, for the members of T  

obtained after operating arbitrary unions and finite intersections can be resolved into individuals in various 
ways. However on imposing some suitable conditions, a topological space may be converted into a metric 
space and in what follows in that situation the topological space is said to be metrizable. According to the 
defining way of topology T   the members of T  are called open sets and their complements are called 
closed sets while there may be some subsets of X which neither be open nor be closed and therefore the 
case which appears here at this point suggest to define the relative topologies on X.  
 

Definition (1.01)- Let (X, T ) be topological space. Then Y is called a topological sub-space of X if and 

only if YX and the sets which are open in Y are precisely the intersection with Y which are open subsets 
of X. Equivalently, a subset of Y is closed in Y if and only if it is the intersection of Y with a closed subset 
of X. 

Now since Y X, therefore here may be some subsets Ai’s of X   such that Ai  Y and Ai’s are open set in 
X but not in Y or neither open nor closed in X. Thus it can be said that a subset of X may not be open as 
well as closed in X and neither in Y as well. 
Example (1.01) Let X {a, b, c, d, e, f, g}. Then the number of subsets of X is 27.  

Now, suppose we have constructed a topology on X by setting as  

T  = {, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c }, X} 

The obviously, T  is a topology on X, but the subsets of X like : {a, b, c, d}, {a, b, c, e}, {a, b, c, f} etc. are 
neither open nor closed in X. 
In the discussion of topological theory, the indiscrete topology and the discrete topology on X is the 
weakest and the strongest topologies on X. Also having been introduced an order relation in X, the scope 
of topology has been extended to ordered topological spaces which is much essential in identifying the 
metrizibility of a topological space, for a metric preserve an order relation. In this discussion, our aim is 
not to elaborate the proper meaning of a single topological space but rather to explain the origin of 
bitopological spaces as well as to visualize its geometrical aspect. Hence, how this achievement can be 
obtained is nothing but a subtle inspection of different types of metric which is found to be a quite new 
discussion in the field of bitopological spaces. 
 

Definition (1.02) (pseudo-metric or semi-metric or Quasi -metric)  
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 A pseudo-metric on a set X is a non-negative function d defined for each pair of points of X such that 

(i) d (x, x) = 0; 
(ii) d (x, y) = d (y, x) ; and  
(iii)d  (x, y) ≤ (x, z) + d (z, y). 

 

 Definition (1.03) (Metric) A metric on a set X is a non-negative function d (d: X  X  R+), defined 
for each pair of point of X, such that   

(i) d (x, x) = 0 ; 
 (ii)        d (x, y) = 0 iff y = x;  

(iv) d (x, y) = d (y, x); and 
(v) d (x, y) ≤ d (x, z) + d (z, y). 

However, the first two postulates of metric can be summarized into a single one having writing as d (x, y) 
≥ 0 iff x ≥ y.  

 

Definition (1.04) (Quasi-pseudo metric)-A Quasi-pseudo metric on a set X is a non- negative function 

(d: X  X  R+) defined for each pair of point of X, such that  

      (i) d (x, x) = 0 ; 
      (ii) d (x, y) ≤ d (x, z) + d (z, y).  
 

The followings are examples of common metrics: 

1. Let M be any non – empty set and d: X  X  R+ be defined as  

                                      d (x, y) = 0 if  x = y 

                                          = 1 if  x ≠ y 

Then (M, d) is a metric space. The metric d on M is called the discrete metric or trivial metric on M. 

2. Let R be the set of all real numbers and let X  X  R+ be defined in the following way: 

                        d (x, y) = x – y,  x, y  R. 

Then d(,) is a metric on R called the standard metric on R. 

3.Let Rn be the set of all n-tuples x = (x1, x2, x3, ………… xn) xiR and let d1: X
n  Xn  R+, d2: X

n  Xn 

 R+, d3: X
n  Xn  R+ be defined respectively on Rn as follows:  

          (i) d1 (x, y) =                                  

 

          (ii) d2 (x, y) =                                  

 

 
n 

i = 1 
(xi -yi)

2  

 
n 

i = 1 
xi -yi 
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                       (iii) d3 (x, y) =                     

 

Then d1 (,), d2 (,) and d3 (,) are matrices on Rn . The metric d1 (,) is called the Euclidian metric on Rn. 

4. Let C be the set of all complex numbers and let d: C  C R+ be defined in the following way:  

                         d (z1, z2) = z1, z2, for all z1, z2  C 

Then d (,) is a metric on C 

5.  Let H ( or R) be the set of all real sequences x = (xi) such that           xn
2 < . For any x = (xn) and y = 

(yn) of H , we define d: H  H  R+ in the following way: 

            d (x, y) =                       (xn - yn)
2
       . . 

Then d (,) is a metric on H or R . The metric space (R, d) is called the real Hilbert space.  

6.  Let BR [a, b] be the set of all bounded real - valued function on the closed bounded interval [a, b] of the 

real line. For any f, g  BR [a, b], we define  

                    d (f, g) = sup f (x) – g(x). Then d (,) is a metric space on BR [a, b]. 

                                  x  [a, b] 

7.   Let CR [a, b] be the set of all continuous function f : (a, b)  R and  let for f, g  CR [a, b], d is defined 
as follows: 
                            

                    d (f, g) =     f (x) – g(x)dx ,  

where the integral is taken in Riemann sense. Then d (,) is a metric on CR [a, b]. 
8.  Let (X, P) be a metric space. Then the metric d (,) 
defined as is a metric on the set [0,1] 
 
  d (x, y) =                            

 

1.02 A minute discussion about metrics 

It is quite obvious, having seen the definition of metrics, 
that all of metrics defined here are non-negative functions 
which can also be visualized by inserting the postulate d 
(x, y) ≥ 0. The originator (Kelly, 1963) of the topic 
‘Bitopological Space’ received on  

Max 
1 ≤ I ≤ n 

(xi -yi); 

 


 
i = 1 

 


 
n = 1 

  [  ] 1 
2 

   
     a 

b 

1 + P (x, y) 

P (x, y)  



Journal of Progressive science, vol.2, no.2, 2011 

204 

 

15th Feb.1962, has enunciated the condition ‘d (x, y) = only if x = y’ by saying this a classical condition. 
In our discussion we are going to describe its meaning manifestedly. 
The metrics  defined above satisfy the condition  d (x, y) = 0 only if x = y vividly but if one wish to onsider 

a function like : d (x, y) = ( x1 - x2)
3+ ( y1 - y2)

3 on  R  R , where  P( x1, x2) and  Q( y1, y2) are  two  district  
points on R2 -plane  in  first     quadrant,     then   evidently d (y, x)  =  ( x2 - x1)

3+ ( y2 - y1)
3,  =  [- ( x2 - 1)]

3 

+ [- ( y2 - y1)]
3  =   - ( x1 - x2)

3 - ( y1 - y2)
3 = - d (x, y). Also, d (x, y)  =  0   ( x1 - x2)

3  +( y1 - y2)
3 = 0 

which does not imply x1 = x2 and y1 = y2 so as to it could be x = (x1, y1) = (x2 , y2) = y  i.e. x = y. As a matter 
of fact,  the  expression  ( x1 - x2)

3+ ( y1 - y2)
3  might be zero provided the differences x1 - x2 and y1 - y2 are  

of the same magnitude but opposite in sign although  the point x and y will not be found  to be coincident 
as shown in Fig(1.1). If x and y are equal then clearly d (x, y) = 0 without any hesitation. Thus, here in this 
discussion, we observe that the condition ‘d(x, y) = 0 only if x = y’ splits a metric in two parts out of one 
of which may be treated as the conjugate of the former.  Let us denote these two metrics by p (,) and q (,) 
so that p(x, y) = q(y, x). Hence  the  condition  ‘d (x, y) = 0 only if x = y’ classifies the   metric d(,) on  X 
in two parts provided it will be relaxed from the definition of a metric and if one adjoins the condition p(x, 
y) = q(x, y) to define  quasi and conjugate quasi metrics, then it will generate two quasi metrics space 
namely (X, p) and (X, q) of which one will be conjugate space to the other. It can be proved that if p(,) is a 
quasi - psuedo metric, then q(,) is also a quasi - psuedo metric. For, if p(,) is a quasi - psuedo metric, we 
shall  have  then  
 (i) P(x, x) = 0 and (ii) p(x, y) ≤ p (x, z) + p (z, y).  
Now, since p (y, x) = q (y, x), so q(x, x) = p (x, x) = 0  
and q (x, y) = p(y, z) ≤  p(y, z) + p(z, x) = q (z, y) + q (x, z) = q(x, z) + q(z, y) which shows that q(,) is 
also a quasi - psuedo metric. 
Again, it is a markable fact that the distances shown by a 
quasi metric and its conjugate are not the same as shown 
by a common metric. For example, the distance shown by 

the metric (x1 - x2)
2 + (y1 - y2)

2  is an Euclidian distance 
PQ, where as the distances shown by the quasi metric  p(x, 
y)  = (x1 - x2)

3 + (y1 - y2)
3   and  its    conjugate    q(x, y)    

= - p(x, y) will be found to be curvilinear distances S1 and 

S2 as shown in fig. (1.2), where x1- x2=y1- y2. 
However, there may be some quasi - metrics for which d 

(x, y)  0 in actual sense, yet they may represent quasi - curvilinear distances. The case appears when x1- 

x2  y1- y2. Also, it should be noted that the curvilinear distances represented by a quasi - psuedo 
metric and its conjugate between two points P(x1, y1) and 
Q(x2, y2) have the symmetry about the line of shortest 
distance between them.  

1.03 Geometrical Concept of Bitopolization of sets  

As everyone is well acquainted that a metric generates an 
open sphere which is often symbolized by Sr(x0) and 
defined as Sr(x0) = {x: d (x0, x) < r}. Where x0 is the centre 
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and r is the radius of the sphere. Precisely in the same way a quasi - psuedo metric p(,) or its conjugate q(,) 
can have the ability to generate open spheres represented as Sr(a) = {z : p(a, z) <r} and  S(-r)(a) = {z : q(a, z) 
> - r}, where a and z are fixed and variable points respectively. In two dimensional space these two spheres 
have been shown in fig. (1.3) which is symmetrically situated about the central point A (a), where a = (a0, 
b0) is the central point and z = (x, y) a variable point in the plane; the spheres should be viewed having 
depicted them free from boundary.  
Now, if one considers two topologies T1 and T2 on X in which T1- open sets and T2 - open sets are 
determined respectively by p(,) and q(,), them the triplet (x T1, T2) has been called a bitopological space. 
Actually, in the study of topology the nature of space has been observed with a view to examine some 
topological invariant properties as well as the distribution of elements in the space. It is quite evident that 

if P and Q are T1-open set and T2- open set determined by p(,) and q(,) respectively, then PQ  . If T1 
and T2 be two arbitrary topologies on X, then one may consider (X, T1, T2) also a bitopological space in 

which Pi  Qi  may be T1 - open as well T2 - open, where Pi  T1, Qi T2 and  therefore Pi  Qi might 
be considered as a twinned pairwise open sets of bitopological space. Now-a-days and also prior to 

sometime, several topologists have been assuming that Pi  Qi, Pi  T1 , Qi  T1 is a pairwise open set, 
but- however, the originator of this topic himself has said nothing about such type of assumption. 
Actually, a bitopological spaces does not behave like a single topological space on the basis of which Pi 

 Qi should be considered a pair wise open set, yet on the basis of T1 -open-ness of Pi and T2 -open-ness 

of Qi, there is no any harm to assume  Pi  Qi as a paiwise open set.  
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