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Abstract 
 

The propagation of the variable energy explosion wave in a dusty gas is studied by using the method of 
similarity solution. The variations in the flow variables behind the shock are calculated numerically and 

the results obtained here are compared with those in absence of solid particles.  
 
Introduction 

The study of the problem of propagation of explosion waves in a mixture of gas and solid particles is of 
great interest to the research workers due to its applications in various branches of science and technology 
Pai et al. (1980), Higashino and Suzuki (1980), Narasimhulu et al. (1985) have investigated the flow field 
behind a propagating blast wave in a mixture of gas and solid particles by using the gas mixture modal of 
Pai (1977) and studied the behaviour of such waves in presence of solid particles. Rogers (1958), Freeman 
(1968), Dirctor and Dabora (1977) have studied the propagation of variable energy explosion waves in 
which the energy input varies proportional to some power of time. In present study, our aim is to consider 
two phase flow of a mixture of gas and small solid particles and study the propagation of variable energy 
explosion wave. In order to get some essential features of shock propagation, small solid particles are 
considered as a pseudo-fluid and it is assumed that the equilibrium flow condition is maintained in the 
flow field and that the viscous stress and heat conduction of the mixture are negligible (Pai et al. 1980). 

 
2. Basic Equations 

The one dimensional unsteady flow field in a mixture of gas and small solid particles is a function of two 
independent variables, the space coordinate r and the time t. In absence of viscous stress and heat 
conduction the equations governing the flow in spherical symmetry are given by 
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where u is the velocity of the mixture along the direction of r, p the pressure of the mixture,   the density 
of the mixture and e is the internal energy of the mixture per unit mass.  
The equation of state of the mixture under equilibrium condition is  
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where kp is the mass concentration of the solid particles in the mixture taken as constant in the whole flow 
field, Z the volume fraction of the solid particles, R΄ the gas constant and T the temperature.  
The relation between kp and Z is given by Conforto (2001) 
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where  sp is the species density of the solid particles.  

The volumetric fraction of the dust in the mixture at a considered state (  ,T) is given by  
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where Z0 and  0 are the initial values of Z and  . 
Z0 is given by the relation. 
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 is the ratio of the density of the solid particles to the species density of the gas. 

The internal energy of the mixture is related to the internal energies of the two species and may be written 
as  
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where csp is the specific heat of the solid particles, cp the specific heat of gas at constant pressured and cv 
the specific heat of the gas at constant volume. 
The equilibrium speed of sound in a mixture of gas and solid particles may be written as  
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3. Boundary Conditions- 



Journal of Progressive science, vol.2, no.2, 2011 

241 

Consider a shock wave be propagating into a mixture of perfect gas and small solid particles of constant 
density at rest. The shock conditions across the shock are (Steiner and Hirschler (2002), Ojha and 
Srivastava (2007) ) 
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where the subscript 0 and 1 refer to the value of the quantities in front of and behind the shock and U 
denotes the velocity of the shock in gas mixture at rest. 
 From (3.1) – (3.3) we may write 
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In absence of solid particles (3.4)- (3.6) reduce to shock conditions in ordinary perfect gas. When velocity 
of the shock wave is initially large the above conditions are given by (Steiner and Hirschler 2002) 
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4. Similarity Solutions 

Let the solution of the problem exist in similarity form as  
 ( )u U f x            (4.1) 
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where x is the similarity variable given by 
r

x
R

 , R denotes the shock radius which is a function of time 

only. The shock velocity U is given by  
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The total energy of the flow may be written as  
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using similarity transformations in (4.5) we get 
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where x0 is the co-ordinate of the expanding surface. Suppose that the total energy is allowed to vary with 
time such that 
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where E0 and q are constants. 
From (4.4) and (4.6) it follows that the motion of the shock front is given by the equation. 
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 Equation (4.8) on integration yields 
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It is clear from equation (4.10) that the value of q=3 corresponds to the uniform expansion of a surface. 
The assumption E=E0t

q includes the blast waves when q=0. Therefore, the solution of physical significance 
appears for the values of q which are between 0 and 3. 
After using the similarity transformation equations, the equations  
 (2.1) - (2.3) take the forms- 
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At the shock front the boundary conditions of the problem is given by 
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In case of strong shocks these boundary conditions take the forms  
 

  
0

1
(1 )

1 2
g

Z

 


  
        (4.17) 

 

  02 (1 )
(1 )

1

Z
f




 
         (4.18) 

 

  02 (1 )
(1 )

1

Z
h




 
         (4.19) 

By solving equations (4.11), (4.12) and (4.13) for d f

d x
, d g

d x
 and d h

d x
 we have: 
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Table 1 
kp     Zo 

G=1 G=10 G=100 
0 
0.1 
0.3 

0 
0.1111 
0.4286 

1.4000 
1.3600 
1.2799 

0 
0.1 
0.3 

0 
0.010989 
0.04109 

0 
0.0011099 
0.004267 

Variation of  ,   and Zo with kp for β=1. 
 

5. Results and Discussion 

Table 1 gives the variation of   ,   and Zo with G=1, 10, 100 for the values of  kp =0, 0.1, 0.3 with β=1. 
Equations (4.20), (4.21) and (4.22) are integrated numerically with boundary conditions (4.14), (4.15) and 
(4.16) for weak shocks and boundary conditions (4.17), (4.18) and (4.19) for strong shocks respectively for 

the values of   Zo given in table 1 and for M2 =10, = 1.4 and q = 2.5 and results are plotted in figures 1(a), 
1(b), 1(c) and 2(a), 2(b), 2(c) for weak and strong shocks respectively.Figures 1(a) and 2(a) give the 
variation of velocity behind the shock wave with boundary conditions for weak and strong shocks 
respectively. These figures show that the velocity increases behind the shock in presence and absence of 
solid particles. For low compressibility i.e. for G=1 the velocity increases faster than those in case of high 
compressibility. For the high values of the compressibility the variation in velocity is negligible in 
comparison to the velocity in absence of solid particles.Figures 1(b) and 2(b) give the variation of density 
with initial conditions for weak and strong shocks respectively behind the shock in presence and absence 
of solid particles These figures show that decrease in density becomes faster behind the shock as 
compressibility increases. In case of low compressibility the decrease in density is so slow that it is not 
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possible to differentiate with the decrease in density in absence of solid particles. Fig 1(c) and 2(c) give 
variation of pressure behind the shock for weak and strong shocks respectively in absence and presence of 
solid particles. These figures show that pressure first increases and then decreases behind the shock in both 
the case i.e. in absence and presence of solid particles as we move towards the centre of explosion. At low 
compressibility the increase in pressure is faster in comparison to high compressibility. Thus, the 
variations in flow variables behind the shock are similar in case of weak and strong shocks both and the 
presence of solid particles affects significantly the behaviour of the flow behind the shock wave. 
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