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Abstract

The notion of Douglas space has been introduced by M. Matsumoto and S. Basco [3], [7] as a
generalization of Berwald space from the viewpoint of geodesic equations. It is remarkable that a
Finsler space is a Douglas space or is of Douglas type if and only if the Douglas tensor vanishes
identically. The present paper is devoted to studying the conditions for some Finsler spaces with («,
p)-metric to be of Douglas type. The theories of Finsler spaces with (o, [)-metric have contributed to
the development of Finsler geometry and Berwald spaces with (a, fB)-metric have been treated by some
authors. Since a Berwald space is a kind of Douglas space, the most noteworthy point of the present
paper is to observe that, comparing with the conditions of Berwald space, to what extent the condition
of Douglas space relaxes.
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1. Preliminaries
Let a(x, y) and B(x, y) be a Riemannian metric o = Jaij (X)yiyj and a differentiable one-form =

bi(x) y' in an n-dimensional differentiable manifold M™. If a Finsler fundamental function in M" is a
function L (o, B) of a and B which is positively homogenous of degree one, then the structure F"=
(M", L(a, B)) is called a Finsler space with (o, B)-metric (Matsumoto, 1992). The space R"= (M", o) is
called a Riemannian space associated with F" (Bacso and Matsumoto,1997). In R", we have the

Christoffel symbols yﬁk (x) and the covariant differentiation V with respect to yij L (%) We shall use

the symbols as follows:

1 1 i. i .
rijzz(vjbivaibj)’ sij:E(iji—Vibj); SIJ=alrsrj, Sj=brer-
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It is to be noted that i = ;_ (0ibi - dibj) - Throughout the paper the symbols 0; and 0 j stand for

i_ and i respectively. We are concerned with the Berwald connection BI" = (G i G i,) which
J J

oxJ oy
is given by

261 (x,y) = ¢V (y7 0,7 - 0 F), where F=L772, Gi=ojglandgi -4l
The Finsler space F" is said to be of Douglas type or called a Douglas space ( Bacso and
Matsumoto,1997) if D' =G'(x, y) y — G(x, y) y' are homogeneous polynomial in y' of degree three. It
has been shown that F" is of Douglas type if and only if Douglas tensor

h _gh 1

. h .sh . sh . sh
Dijk ijk_n_l(Gley +G1J6k+GJkSi+Gk15j)a

vanishes identically, where ng = éng is the hv-curvature tensor of Berwald connection BI',  Gj

r .
= Gijrand Gijk = 9kGjyj [2].

Now we consider the function G'(x, y) of F" with (o, B)-metric. According to Kitayama et al.
1995; Matsmoto, 1999) they are written in the form

261 =yl +2BiaBi CE i, e ala *[L_ “_bi]’ (1.1)
o L, O L o o B
where we put,
E=PBLp .., cx_ *PU00La ~2as0Lp), b'=a'b, r’=b’a’ - P’ (1.2)
L 22 Ly +ar’Lgg )

b’=alb; b; and the subscript o and B in L denote the partial differentiation with respect to o and 3
respectively. Since ybo = ygk (X)nyk is homogenous polynomial in (y') of degree two, we have
(Matsmoto, 1998). ) .
Proposition (1.1). A Finsler space F" with (a, B)-metric is a Douglas space if and only if B’ = B' y’

— B y' are homogeneous polynomials in (y') of degree three.

Equation (1.1) gives

2
“ Lo ¢owpiyi_piyiy:
Pl (b'y y)

gil _ *LB (1.3)

(soy?—sfyhH+
La

Here we state the following lemma for the latter frequent use (Hashiguchi ez. al., 1996).
Lemma. If o = 0 (mod B), i.e. a;(x) y' ¥ contains bi(x) y'as a factor, then the dimension is equal to
two and b’ vanishes. In this case we have & = di(x)y' satisfying o> = 8 and d; b' = 2.

Through out the paper, we shall say “homogeneous polynomial (s) in (y') of degree r”” as hp(r)

for brevity. Thus ybo are hp(2) and if the space is of Douglas type then D" and B are hp (3). Also we

have assumed that a” % 0(mod P), through out the paper.

2. Special (a, B) metric
We shall apply the proposition (1.1) to the (o, B)-metric
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bja? +byap +byp?
ajo +aj)f

L =

where a’s and b’s are constants. It is obvious that by homothetic change of o and [ this kind of metric
may be classified as follows:

2
a;# 0, a, =0, we have the Randers metric L=a+fand L=c;a+c, + —. D
o
a; =0, a, # 0, we have the Randers metric L = o + 3 and (ID
OL2
L=cla+czﬁ+?. (2.2)
a; a, # 0, we have (III)
L:claz-i—czaB +C3B2 ) (2.3)
o+ P

As for Randers metric we have (Aikou, et al., 1990)
Theorem (2.1) A Randers space is of Douglas type, if and only if s;; = 0. Then 2G' =

rgo v
L

We shall discuss the conditions for F" with metrics (2.1), (2.2) and (2.3) to be of Douglas type in the
following three articles.

i
Yoo *

3. Finsler space with metric (2.1)

For the metric (2.1), we have
_cga’—p’ L. -
* o’ b a o’

L c2a+2[3,

Therefore the value of C* given in (1.2) becomes

co_ @ | Too(e0® —B%) - 2sg(cpo + 2p)a’ |
2B (¢; +2b2)a? -3p2

Also from (1.3), we have

2
i a“(cra +2B), P
BY = ———2——— .2 (soy’ =spyh)
cra -

3.1)

+L o (a2 —B2)-2sy(cro +2p)a’ | (blyd —blyh),
2 _p2 (¢; +2b2)a? - 3p?2

cla
which may be written as
(cra? —p2)(eq +2b2)a? ~3p21BY (32)
—a?[cy(ey +2b2)ad +2(cy +2b%)a B —3c,aBp 2 — 63 I(shyT sy
—az[roo (cloc2 —Bz)—Zsoaz(c2a+2B)] (biyj — bjyi)=0.
Since . is irrational in (y'), the equations (3.2) are divided into two equations as follows:
(cra® =B2)(ey +2b%)a? ~3p7 1B

— 202 [(c; +2b2)a?p-3p3 Ishyd —siyh)
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—a[rgg (eja? = %) —4sga?p)] (b'yI - bly!)=0, (3.3)
[(c; +2b2)a? —3p2Yshyd —siyl) 25002 (blyJ —blyl)=0. (3.4)
Equation (3.4) may be written as
[(c; +2b2)a? —=3p2)(shs) +sis) —sjsl —sis}) 3-5)
~2a %[5, 8] + 5,801 — (5,8 +5,85)bI1=0.
Contracting (3.5) with a™, we get
2[(cl+2b2)a2—3[32]sij—az(bisj—bjsi)zo- (3.6)
Contracting (3.5) with b", we get
[(c; +2b2)a? =382 ](blsk —s'al +sis} —bisi)=0.
Contracting it again by j = k, we get
n[(c+2b%)a’ — 3p%] s'= 0. (3.7)

Since o’ # 0(mod ) we have n[(c,+2b%)a® — 3B%] # 0. Hence from (3.7) we have s' = 0 and

consequently (3.6) yields s’ = 0 which implies sij=0= Sg . Putting these values in (3.3), we get

[(cq +2b2)a? -3p2 1B —a?ry, (blyl —biyl)=0. (3.8)
The term in (3.8) which seemingly does not contain o’ is — 3p> BY. Hence we must have hp(3) y i(j3) ,
satisfying — 3p> Bi = o i(j3) . Hence we have BY = au’, where we have put i(j3) = -3p% u’ with

hp(1) u'. Thus (3.8) reduces to

[(c1+2b2)oc2 —3ﬁ2]uij—roo (biyj—bjyi):()- (3.9)
Transvecting (3.9) by b; y; (y; = ajj y), we get

[(cy +2b2)a? —3p21ull by =roo(b” o — B°).
Now if [(¢cy +2b 2ya? - 3B 21 contains (b> o” — B?), then there exists a scalar function A(x) such that
[(cy + 2b2 Yo 2 _ 352 1 = Mx) (b> a® — p?), which gives A = 3 and b* = ¢, for o % 0(mod B). Thus for
b’ % Ci, [(cq + 2b 2 Yau 2 _ 3B 2 ] 1s a factor of roo. Hence there exists a function h(x) such that roo= h(x)
[(cq +2b 2y02 —3p2 7. Therefore we have r;; = h(x) [¢; + 2b”) a;— 3b; bj]. Since V;b; = r;; + s;;, and s;
=0, we have
Vibi = h(x) [c, + 2b%) a;— 3b; by]. (3.10)
Conversely if (3.10) holds, then from (3.1) it follows that BY = h(x) o (biyj - bjyi) which shows
that BY is hp(3). Hence F" is a Douglas space.
Since we have the
Theorem (3.1) A Finsler space F" with (o, B)-metric (2.1) for which ¢, # 0, b> # ¢, and o® % 0(mod
), is a Douglas space if and only if there exists a scalar function h(x) such that (3.10) holds. In
particular if h(x) = 0, then F" is a Berwald space.

4. Finsler space with metric (2.2)

10
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For the metric (2.2), we have

+ 2 2 _
La:Wﬁ—“’ Ly =f2B —e”> Ly, =

Therefore the value of C* given in (1.2) becomes

a Broo (CIB+2a)—2as0(c2[32 —(xz)

C* =

2 01[33 +2b%a’
Also from (1.3), we have
BY :%(sb}”—sgﬂl) (4.1)
1

+a3[Br00 (CIB + 2(1)— 2(X,SO(CZB2 . (12)] (bly‘] _bel)’
B(ciB+2a)(ciB> +2b%a?)

which may be written as

[3(012[34 +2bzcloc3[3+2clocB3 +4b2q 4Bl (4.2)
—afcje,B +2c,b%a’B? —cja?Bp —2b%a” I(spy! —Sg)yi)
~ 0 [Brog (¢1B + 200) — 2059 (¢op> —a)] vy i - piyH=0.
Since a is irrational in (y'), the equations (4.2) are divided into two equations as follows:
[3(012[34 + 4b20c4]Bij - 2b2a4(c2[32 - (;Lz)](s})yj —s(j)yi) (4.3)
~ 20 [Brog —sg(cap2 —a?) (blyd-bly)=0.
And 2(b%0 2 + p2)BY —ﬁ(czﬁz —onz)(si)yj —s(j)yi) —roooc2 (biyl —piyiy=0. (4.4)

Only the terms ¢,’p’ B! of (4.3) seemingly does not contain o*. Therefore there exists a hp(4) v ?4)

such that ¢,’p° B =o'y ?4) . Since o # 0(mod B), we have p B = o*v(x), where v' is hp(0) i.e. a
function of x' only such that v 1(1'4) =¢,’B* v!. Hence (4.3) is reduced to

(2Bt +4b2a? vl —2b2(c,B2 —a2)(shyl —siyh) (4.5)

—2[Brgg — s (c2B* —a?)] (blyd - piyi) =0.

The terms in (4.5) which seemingly does not contain f3 is

4b2a vl oy 2b20c2)](s})yj - s(j)yi) - 250(12) (b'yJ —bly").
Hence we must have hp(1) w" such that the above is equal to 2a* p w". Hence

262 vl + b2 (shyl —siyl)=so(blyd —blyl) =g wh. (4.6)
By putting w’ = WE (X)yk , the above is written as

ab2ay v 4 b2 s8] +sisd —sisl —sisl

(s8] +5,8{ )b — (5,8} + 5,800 T=bpwl +bw) - (4.7)

Contracting (4.7) by j = k, we get

4b% a v+ n(b?st —bls; ) =b,wi +b wi. (4.8)

11
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Next transvecting (4.7) by b; b", we have
4b% b v b, +b* (b2sk —s'by —bls, ) =b%b, wil + b b wibS.

4.9
Transvecting (4.9) by b*, we get 4b* v" b, — 2b’s' = 2 b* brwisrbs , which gives
i ) ir i . 2

brwlsrbS =b"(2v' b, —5s), provided b”= 0. (4.10)
Substituting the value of b, w isrbS from (4.10) in (4.9), we obtain
bewir=2b, v b+ b2sk —bls, .
Substituting the value of brwi(r from (4.11) in (4.8), we have

ir _ 41.2 ir ir 2.1 i

bW =4b%a, v = 2b, v b+ (n— 1) (b”sy, —b'sy). @.11)

If weput W' = —1(W1rr + 2V1rbr) , then equation (4.11) gives

2 . . 4b2 : 2 4b2 - J
b2si = wib, +bis, - = a, v’ Orb sij =bjs;+wb; - rl_lvij,where wi=a; W and (4.12)
Vij = @ih Aj v Since sij and v; are skew-symmetric tensors, we have w; = — s; easily. Hence

_ ! 4 . 4.13
sij —bT(biSj—bjSi)—:Vij ( )
To determine r;; we eliminate BY from equations (4.3) and (4.4) to obtain

C(shyl —s)yH+Dplyi - byl =0, (4.14)
where C = (c, p* = ad)(c; B° - 4b*a’)
and D =r1goa’ B’ (ci? B* — 4a’) + 4sy a'(c, P2 — )b o + B). (4.15)

Contracting (4.14) by b; y;, we get C s o’ + D (b* a® — p*) = 0, which after substituting the values of C
and D gives so(cy B> — o®)(c; B — 4 o B*) + 100 B(c1p* — 40°)(b* o> — B*) = 0.
The terms in (4.15) which seemingly does not contain o’ is ¢, BS So. — C;° B7 roo Hence we must have

. .. C
a function u(x) such that it is equal to ¢, B7OL2 u(x). Therefore roo= 22 B So— o u. Hence
€
.= €2
T E(bistrbjsi)—u aij (416)

Theorem (4.1) Let F” be a Douglas space with (o, p)-metric (2.2) for which b> # 0 and o> # 0(mod

B), then there exists a scalar function u(x) and a tensor function vji(x) such that V; b; (=i + i) is
given by (4.13) and (4.16).

5. Finsler space with metric (2.3)

For the metric (2.3), we have

L= P2 L, - Q1 L, 2B’ s
(a +B)? (a +B)?2 (a +B)°
where
P, = ¢, +2¢; af +(cy — c3)B%, Qa = (o= ¢1)or” +2¢3 af +c3 B, and ¢o = c,— ¢, + cs. (5.1)

12
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Therefore the value of C* given in (1.2) becomes ~ ¢# — ao+B)(rogg Py —259aQ;
2BR ;

where
Ry = (c; +2¢9 b®) o’ +3¢; a’ B +3(cr — ¢3) a B + (c2 — ¢3) B (5.2)
Also from (1.3), we have

gil _ &(Sioyj Cslyhe coa’ (rgg Py ~ 2500Q ;) (biyd — biyi). (5.3)
P, P,R
which may be written as
P2R3Bij -aQ,R; (si)yj - s(j)yi) - cooc3 (rgo Py — ZaSOQz)(biyj - bjyi) =0. (5.4
From (5.1) and (5.2) we can calculate P, R; and Q, R; as
P, Ry=poo’ +pr o’ B+pyo’ PP+ psa’ B +psaBt+psp’,
Q:Ry=ko o’ +kj o' B +ky o’ B> +ks o B* + kg o0 B+ ks B,
where
Po = ci(c; +2 co b), P =2po+ 3¢, p2 = (c2— c3)(de; + 2¢0 bY) + 6¢7, (5.7)
p3 =10 ¢ci(cr — ¢3), pa=(c2—c3)[2¢1 +3(ca—¢3)], ps=(c2—cs3),
ko= (c2—c1) (¢ +2 cob), ki =3ci(ca—¢1) +2c3(c; +2 ¢ b),
ko =3(ca—¢1) (2 — ¢3) + 61 3+ e3¢t +2 o b,
k3 = (¢2 —¢3) (ca — ¢t 6¢3) + 3¢ €3, ky = 5c3(cy — ¢3), ks = c3(c2 — ¢3).
In view of (5.1), (5.5) and (5.6) the equation (5.4) may be written as
(po o +py a* B +pya’ B+ ps o B+ ps a B+ ps BB (5.8)

—a o’ ko Bk of B2k ol Bk a B+ ks B (shy —siy')
—Co oc3[r00{cloc2 +2¢; af +(c, — c3)B2}— 20 sp{(cr— cl)oc2
+2¢3 of +e; By - b y) =0.
Since . is irrational in (y'), the equations (5.8) are divided into two equations as follows:

B(pi o' +ps o B+ ps BB — o (ko o +ky o B + Ky B (shy) —siy')  (59)
—2¢o o [e1 B oo — Sof(ca— c1)a’ +¢3 BBy — b y) = 0.

and (po o* + p> o B2+ pa BYBY - (ks a* + ks o B2+ ks BY) syl —sdy))  (5.10)
— ¢o o[roo{ci0” +(ca — c3)B7}— des s’ BBy — bl y') = 0.
Only the term ps B° BY of (5.9) seemingly does not contain o”. Therefore there exists a hp(6) ki(jé)
such that it is equal to o’ ?6) . Hence we have BY = a” k!, where we have put k= ps B’ k! with

(6)
hp(1) k”. Hence (5.9) reduces to )
B(pr o +ps a® B7 + ps BHK! — (ko o* + Ky o B7 + kB (shy T — s ]y h) (5.11)

— 269 o [e1 B 100 — so{(co— c1)a’ + ¢3 BAHI(b Y = b y) = 0.
The terms in (5.11) which seemingly does not contain 3 are

—ko o} (sgy! —shy') + 2eo(co ) soa (b y — by,
Hence we must have hp(1) m such that above is equal to (14B m, Therefore, we have
—ko (sgy? —sy") +2co(er—c) so(b'y' — b y) = B m’.
By putting m' = 1, E (x)y X, equation (5.12) may be written as

13
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_ko[sihSIj(+S}(5gl_Sgl5}(_sf'(5ih]+200(cz—c1) (5.13)

[(sp8) +5,8{ )b = (s,8% + 5, 85)b T=bymJ + b ml
Contracting (5.13) by j =k, we get

n[- kosil + 2¢(cy — €1) s b= bhmlrr + brmg . (5.14)
Transvecting (5.13) by b; b", we obtain
—ko(b’s} —s'be=b's)=b%b,m + b, b mIbS. (5.15)
Further transvecting (5.15) by b*, we get brmisrbS =ko s', provided b* # 0. Thus (5.15) gives

b2b,mi =ko(bls, —b2si)- (5.16)
Then (5.14) is rewrittenas b, m" = —k,(n —1)s} + ub's,, (5.17)
wherep_ , (cy —c1) - k_g If we put m' = Mmir’ then equation (5.17) give

b
ko(n — l)sil =p (b's, —m'by) or equivalently s = u (bys;—bm,).
kg(n—-1) ! !
Since s;jis skew symmetric, we have m; = s;. Therefore _ = _ A (bs:—bis;) (5.18)
Y'okg(n-1) ) o

Hence we can state the following
Theorem (5.1) Let F" be a Douglas space with (a, B)-metric (2.3) for which b® # 0 and o> # 0(mod

P).then (v b, —v b - B (h.
ko(n-1) '

cs.and ko= (co—c)) (c;+2 ¢ b2).

k —
p=2ncy(cy, —cy)— b(z) ,C=Ci—Cyt

Cbisy) , Where
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