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Abstract

This paper investigates rotatory vibration of orthotropic spherical shell of inner radius a and outer

radius b, b>a. Considering the density p of the material of the shell in the form p =p,r" and the

. . 0 . 0* w 0"
eZanlC constants Co = Uy + Uy —+H U —5+ it + W
! ! y at Y atZ J atn

constants and n is an integer. The frequency equation of the shell has been derived and graphs have

(i,j=1,2.....n) where p, and uus are

been plotted for discussion of wave so propagated in this case.
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1. Introduction

Recently, a large number of papers have emerged in the study of vibrational problems in elasticity due
to their applications in various branches of science and technology. Mukharjee (1970) discussed the
elastic vibration of cylindrical shell of transversely isotropic material. Tranter (1942) investigated the
elastic vibration of isotropic cylindrical shell. Narain and Prasad (2006) investigated radial vibration of
non-homogeneous composite spherical shell. Narain and Verma (2006) discussed the radial vibration
of isotropic cylindrical shell of varying density placed in a magnetic field. Goswami, Sengupta and
Chakraborti (2005) discussed radial vibration of composite spherical shell. Narain and Sinha (2006)
investigated vibration of visco-elastic spherical shell of variable density. Narain and Sinha (2007)
investigated radial vibration of magneto-elastic spherical shell. Sequal to these, the present paper is an
attempt to discussed the rotatory vibration of orthotropic spherical shell of inner radius a and outer
radius b, b>a. The density p and the elastic constants ¢;; of the material of the shell are assumed to

vary as

o NI Lo
p=p,r" and Cy = My =ty ot e

respectively where u; and p, are constants, n is an integer and r is the radius vector.

2. Fundamental equations and boundary conditions

The stress-strain relations for an orthotropic material in spherical polar co-ordinates (I‘, 0, d)) as given
in Love (1944) are :
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where C;, Cpy .. etc. are elastic constants and €, €gg etc. are strain components. The

components of strain in polar co-ordinate (1”, 0, ¢) are,
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We consider

2 n

0 w0
cij=u1j+uija+uij¥+ ......... +uij¥(1,]:l,2 ...... n)
and
P=por’ 2.3)
where uljs and p, are constants, n is an integer and r is the radius vector.

The boundary condition of the shell is

(o " ) = (% )b =0 . (2.4)
The stress equations of the motion are
oo, laoo, 1 do, 1 o’u
oy 270 +-\206_ -0, —0,, +0 cotO)= s
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For, rotatory vibration of the shell
u, =uy =0, u,="f(r)sin0" (2.6)
From the equations (2.1), (2.2) and (2.6) we have,
G, =0y =04 =0gy =0, =0
and

. . " . af f iot
G, = (u44 +iop,, — o, + ....)sme(g—?je : 2.7)

Using the equations (2.5) and (2.7) we have,
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where,
L=p,, +iop,, — o'y, +.oee . (2.9)
Applying the transformation
1
f(r)=r 2F(r) (2.10)
the equations (2.8) and (2.10) give
2
0 f+la—F—2L2F(r)+k2r"F(r)=o (2.11)
or ror 4r
where
2
®
L
Using the transformation,
so_2 5 (2.13)
n+ 2
in equation (2.11) we get,
2 2
0 f+l@i+(kz_“_zJF(z)=o (2.14)
0z z 0z z
where
__ 9 (2.15)
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3. Methods of solution
The solution of the equation (2.13) is given by

F(z)= AJ, (kz)+ BY, (kz) 3.1)
where A and B are constants and J, Y, are Bessel’s function of first and second kind of order o
respectively.
From the equations (2.10), (2.13) and (3.1) we have,

L n+2 n+2
f(r)zr Z{AJq[ 2k r? ]+BYa( 2k r? J} . (3.2)
n+2 n+2

The equation (2.7) and the boundary condition (2.4) give

(ﬁ_ Ej ~0 (33)

or r/)._,

Further, the equations (3.2) and (3.3) give

n+2 n+2 n+2
2ka 2 | AT, 2k_.5 + BY, 2k_.5
n+2 n+2

—3{AJH[ 2k a%J+BYa[ 2k a";ZH=0 ) (34)

n+ 2 n+ 2

Using recurrence formulae
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)= "0 0 6) - Y=Y, ()~ Y, ) in equation (3.4) we have,
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Similarly, the equation (3.3) at r = b gives
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Eliminating A and B from the equations (3.5) and (3.6) we have,
lam+2)-31,()-(+2)&d,., ()  {am+2)-3}y,(5)-(n+2)eY,. (&)
fa(m+2)-33,(n)-(+2)nt,.,(n) {alw+2)-3}Y,(m)-(+2)nY, ()

where

2k n+2 2k n+2
= a 2 , = b 2
: n+2 " n+2
Expanding J,, J ., Y,, Y,,, and using the result for small x, J n(x) =2

in equation (3.7) we get

(gj“[ (n+2)(2a’> -&%)-6a }{ (n+2)2a> -n?)-6a }

n) [(+2)2a-207-¢€*)+6(a-1)] |(n+2)2a-2a>-n)+6(a-1)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Substituting the value of a,m and & from the equations (2.15) and (3.8) in equation (3.9) we have

9

an? [PIQILZ + P, (Plbmz - Qlamz )L - P22 (ab )Mz]

_pre [P.Q,L2+P, (Pa™2—Q b2 )L - P2(ab )]

where
P =162-54(n+2),
Q, =6(n+2){n+2) +6}+162
P, = 4p,0’ (n + 2)2
Assuming AU,ALV etc. to be zero the equations (2.9) and (3.10) give

aﬁ [{PlQl(szm - 032“24 - 2032“44“24 + 034“21)

+4p,0°(n+2) (u44— (ozuzm) (Plb‘”z— Qa""? )— 16pio* (n+2)}(ab)"™? }

+ i{21)1(21 (H44 - 032”24 )u'440)+ 400032% (n + 2)2 (Plbn+2 - Qlan+2 )}]

= bm {PIQI(Hézm - COZHZ4 - 2032“44H:14 + CO4H:124)

+4p,0°(n+2) (u44— wzp,zm) (P1 a"”? -Q,b"? )— 16p0*(n+2)"(ab)"™ }
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+i{2PQ, (u44 - 032“24)”4403"‘ 4p oy (n +2) (P13n+2 -Qb™ )H (3.12)
Comparing real parts on both sides of the equation (3.12) we get,

9 9 9 9
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9 9 9 9
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+PQui, =0 (3.13)
which is the required frequency equation and may be written in the form
Po'+Qw’ +R =0 (3.14)
where
( 9 9 9 9
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Q: 9 9 PlQlFl'424 _4p0”'44(n+2)2{(P1a“+2 +le“+2an+2 - Plbmz +Q1an+2]an+2}:|
b2 — g2

2
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Numerical calculations

To observe the nature of the frequency of the different materials viz. Quartz, Pyrites (cubic) and
Potassium Chloride two cases have been considered. In the first case n=0 while in the second case n=1
with outer radius of the shell being varying in both cases. Graphs have been plotted between the outer
radius b and frequency w.

Table-1 Case-I when n =0 and outer radius of the shell is varying

S.No. Materials Po Wy ;,1'44 },l:m a b ©
1. Quartz 2.62 582 -425 2 1 1.5 +86.49
2.0 +40.47
2.5 +54.90
3.0 +40.96
35 +28.16
2. Pyrites 5.25 1075 -375 4 1 1.5 +92.99
(cubic) 2.0 +23.25
2.5 +20.98
3.0 +23.10
35 +31.95
3. Potassium 1.984 65.50 -350 3 1 1.5 +48.90
Chloride 2.0 +29.22
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2.5 +13.55
3.0 +09.77
3.5 +09.07
Table-2 Case-II when n =1 and outer radius of the shell is varying
S.No. Materials Po Wy H;m H:m a b ®
1. Quartz 2.62 582 -425 2 1 1.5 +30.03
2.0 +41.50
2.5 +53.37
3.0 +64.42
35 +73.44
2. Pyrites 5.25 1075 -375 | 4 1 1.5 +28.95
(cubic) 2.0 +40.15
2.5 +51.89
3.0 +63.00
35 +72.25
3. Potassium 1.984 65.50 -350 3 1 1.5 +05.15
Chloride 2.0 +05.41
25 +05.54
3.0 +05.60
35 +05.63

Graph-1
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Graph-2
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Conclusions

Case-1

For n =0, from the graph-I we observed that if outer radius of the spherical shell increases frequency
of the Quartz decreases rapidly and then increases slowly and further it decreases rapidly, while the
frequency of the Potassium Chloride decreases when outer radius increases. In the case of Pyrites
(cubic) with the increase of radius of the shell the frequency decreases and then increase gradually.
Case-11

For n=1, from the graph-Il we observed that with the increase of outer radius of the shell the
frequency of Quartz and Pyrites (cubic) increases rapidly while the frequency of the Potassium
Chloride increases very slowly. In both the cases the graphs are mirror image about the liney =0.
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